【題目】已知函數(shù),

(Ⅰ)若的圖像在處的切線與直線垂直,求實(shí)數(shù)的值及切線方程;

(Ⅱ)若過點(diǎn)存在3條直線與曲線相切,求的取值范圍

【答案】(Ⅰ)見解析;(Ⅱ)

【解析】

I)利用導(dǎo)數(shù)求得函數(shù)圖像在處切線的斜率,根據(jù)兩條直線垂直斜率的關(guān)系列方程,解方程求得的值,求得切點(diǎn)坐標(biāo)后求出切線方程.II)設(shè)切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線方程,將代入切線方程并化簡,構(gòu)造函數(shù),將條切線問題轉(zhuǎn)化為直線有三個(gè)不同交點(diǎn)問題來解決,利用導(dǎo)數(shù)求得的極大值和極小值,由此求得的取值范圍.

(Ⅰ)由,于是在處的切線的斜率為.

由于切線與直線垂直,所以. 故實(shí)數(shù)的值為.

當(dāng)時(shí),切點(diǎn)為,切線為;

當(dāng)時(shí),切點(diǎn)為,切線為.

(Ⅱ)設(shè)切點(diǎn)坐標(biāo),切線斜率為,則有,所以切線方程為:

因?yàn)榍芯過,所以將代入直線方程可得:

,

所以問題等價(jià)于方程,令,

即直線有三個(gè)不同交點(diǎn).

,令解得,

所以單調(diào)遞減,在單調(diào)遞增.的極大值為,極小值為,所以若有三個(gè)交點(diǎn),則,

所以當(dāng)時(shí),過點(diǎn)存在條直線與曲線相切 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,下有七張卡片,現(xiàn)這樣組成一個(gè)三位數(shù):甲從這七張卡片中隨機(jī)抽出一張,把卡片上的數(shù)字寫在百位,然后把卡片放回;乙再從這七張卡片中隨機(jī)抽出一張,把卡片上的數(shù)字寫在十位,然后把卡片放回;丙又從這七張卡片中隨機(jī)抽出一張,把卡片上的數(shù)字寫在個(gè)位,然后把卡片放回。則這樣組成的三位數(shù)的個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且,若向量與向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種植物每日平均增長高度(單位:)與每日光照時(shí)間(單位:)之間的關(guān)系有如下一組數(shù)據(jù):

(單位:

6

7

8

9

10

(單位:

3.5

5.2

7

8.6

10.7

(1)求關(guān)于的回歸直線方程;

(2)計(jì)算相關(guān)指數(shù)的值,并說明回歸模型擬合程度的好壞;

(3)若某天光照時(shí)間為8.5小時(shí), 預(yù)測(cè)該天這種植物的平均增長高度(結(jié)果精確到0.1)

參考公式及數(shù)據(jù):,, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xln x,g(x)=x3ax2x+2.

(1)如果函數(shù)g(x)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;

(2)對(duì)任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下命題正確的是(

A. 若直線,,則直線ab異面

B. 空間內(nèi)任意三點(diǎn)可以確定一個(gè)平面

C. 空間四點(diǎn)共面,則其中必有三點(diǎn)共線

D. 直線,,則直線a,b異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某課題小組共10人,已知該小組外出參加交流活動(dòng)次數(shù)為12,3的人數(shù)分別為33, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).

1)記“選出2人外出參加交流活動(dòng)次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;

2)設(shè)X為選出2人參加交流活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.

非一線城市

一線城市

總計(jì)

愿生

45

20

65

不愿生

13

22

35

總計(jì)

58

42

100

附表:

算得,,

參照附表,得到的正確結(jié)論是

A. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別無關(guān)”

C. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

D. 有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】CPI是居民消費(fèi)價(jià)格指數(shù)(consumer price index)的簡稱.居民消費(fèi)價(jià)格指數(shù),是一個(gè)反映居民家庭一般所購買的消費(fèi)品價(jià)格水平變動(dòng)情況的宏觀經(jīng)濟(jì)指標(biāo).右圖是根據(jù)統(tǒng)計(jì)局發(fā)布的2018年1月—7月的CPI 同比增長與環(huán)比增長漲跌幅數(shù)據(jù)繪制的折線圖.(注:2018 年2月與2017年2月相比較,叫同比;2018年2 月與2018年1月相比較,叫環(huán)比)根據(jù)該折線圖,則下列結(jié)論錯(cuò)誤的是( )

A. 2018年1月—7月CPI 有漲有跌

B. 2018年2月—7月CPI 漲跌波動(dòng)不大,變化比較平穩(wěn)

C. 2018年1月—7月分別與2017年1月一7月相比較,1月CPI 漲幅最大

D. 2018年1月—7月分別與2017年1月一7月相比較,CPI 有漲有跌

查看答案和解析>>

同步練習(xí)冊(cè)答案