【題目】漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一?少1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒賺1.7元;如果當(dāng)天未能按量完成任務(wù),則按實(shí)際完成的雕刻量領(lǐng)取當(dāng)天工資. (I)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過(guò)去10天每天的雕刻量n(單位:粒),整理得如表:

雕刻量n

210

230

250

270

300

頻數(shù)

1

2

3

3

1

以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┣笤摰窨處熯@10天的平均收入;
(ⅱ)求該雕刻師當(dāng)天收入不低于300元的概率.

【答案】解:(Ⅰ)當(dāng)n≥250時(shí),f(n)=250×1.2+1.7×(n﹣250)=1.7n﹣125,

當(dāng)n<250時(shí),f(n)=1.2n,

∴雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式:

f(n)= ,(n∈N).

(Ⅱ)(i)由題意得f(210)=252,f(230)=276,f(250)=300,f(270)=334,f(300)=385,

∴X的可能取值為252,276,300,334,385,

P(X=252)=0.1,P(X=276)=0.2,P(X=300)=0.3,

P(X=334)=0.3,P(X=385)=0.1,

∴X的分布列為:

X

252

276

300

334

385

P

0.1

0.2

0.3

0.3

0.1

E(X)=252×0.1+276×0.2+300×0.3+334×0.3+385×0.1=338(元),

∴該雕刻師這10天的平均收入為338元.

(ii)由X的分布列知:

該雕刻師當(dāng)天收入不低于300元的概率:

P=P(X=300)+P(X=334)+P(X=385)

=0.3+0.3+0.1=0.7


【解析】(Ⅰ)當(dāng)n≥250時(shí),f(n)=250×1.2+1.7×(n﹣250),當(dāng)n<250時(shí),f(n)=1.2n,由此能求出雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式.(Ⅱ)(i)由題意得f(210)=252,f(230)=276,f(250)=300,f(270)=334,f(300)=385,X的可能取值為252,276,300,334,385,分別求出相應(yīng)的概率,由此能求出該雕刻師這10天的平均收入.(ii)由X的分布列知該雕刻師當(dāng)天收入不低于300元的概率:P=P(X=300)+P(X=334)+P(X=385),由此能求出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)).它與曲線 交于 兩點(diǎn).
(1)求 的長(zhǎng);
(2)在以 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn) 的極坐標(biāo)為 ,求點(diǎn) 到線段 中點(diǎn) 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1 , x2 , 則e e 的最大值為(
A.
B.2(ln2﹣1)
C.
D.ln2﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)結(jié)論: ① (x2+sinx)dx=18,則a=3;
②用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2的值越大,說(shuō)明模型的擬合效果越差;
③若f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣f(x),則函數(shù)f(x)的圖象關(guān)于x=1對(duì)稱;
④已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ<﹣2)=0.21;
其中正確結(jié)論的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=cos2x的圖象,只要把函數(shù) 的圖象上所有的點(diǎn)(
A.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
B.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
C.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
D.向左平行移動(dòng) 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為中國(guó)傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來(lái).現(xiàn)有一魯班鎖的正四棱柱的底面正方形邊長(zhǎng)為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計(jì)),若球形容器表面積的最小值為30π,則正四棱柱體的高為(
A.
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣3)ex+ax,a∈R. (Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a∈[0,e)時(shí),設(shè)函數(shù)f(x)在(1,+∞)上的最小值為g(a),求函數(shù)g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為評(píng)估兩套促銷活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動(dòng)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請(qǐng)根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動(dòng)方案(不必說(shuō)明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:

售價(jià)x

33

35

37

39

41

43

45

47

銷量y

840

800

740

695

640

580

525

460

①請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù)R2 , 并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)x定為多少時(shí)?利潤(rùn)z可以達(dá)到最大.

49428.74

11512.43

175.26

124650

(附:相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ) 寫(xiě)出直線l普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 過(guò)點(diǎn)M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案