【題目】如圖所示,在底面是直角梯形的四棱錐中,側(cè)棱底面,,,,,則點(diǎn)到平面的距離為( )
A. B. 2 C. D. 4
【答案】A
【解析】
以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AD到平面PBC的距離,即點(diǎn)D到平面的距離.
以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
P(0,0,2),B(2,0,0),C(2,2,0),A(0,0,0),
=(2,0,﹣2),=(2,2,﹣2),=(2,0,0),
設(shè)平面PBC的法向量=(x,y,z),
則
取x=1,得=(1,0,1),
∵AD∥BC,AD平面PBC,BC平面PBC,
∴AD∥平面PBC,∴點(diǎn)D到平面PBC的距離即為AD到平面PBC的距離,
∴d=
故答案為:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為2,且橢圓的離心率為.
(1)求橢圓的方程;
(2)過橢圓的上焦點(diǎn)作相互垂直的弦,,求為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為函數(shù)的極值點(diǎn).
(1)證明:當(dāng)時, ;
(2)對于任意,都存在,使得,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面PAC⊥平面ABC,點(diǎn)E、F、O分別為線段PA、PB、AC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn),AB=BC=AC=4,PA=PC=2.求證:
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若時,求函數(shù)的最小值;
(2)若,證明:函數(shù)有且只有一個零點(diǎn);
(3)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。
(1)求的值,并根據(jù)頻率分布直方圖估計該校學(xué)生一周課外閱讀時間的平均值;
(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊(duì),求這2人來自不同組別的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)?0,+∞),且對一切x>0,y>0都有,當(dāng)時,有
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性并加以證明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,角, , 所對的邊分別為, , ,且.
(Ⅰ)求角的大;
(Ⅱ)已知, 的面積為,求的周長.
【答案】(Ⅰ).(Ⅱ).
【解析】【試題分析】(I)利用正弦定理和三角形內(nèi)角和定理化簡已知,可求得的值,進(jìn)而求得的大小.(II)利用余弦定理和三角形的面積公式列方程組求解的的值,進(jìn)而求得三角形周長.
【試題解析】
(Ⅰ)由及正弦定理得, ,
,∴,
又∵,∴.
又∵,∴.
(Ⅱ)由, ,根據(jù)余弦定理得,
由的面積為,得.
所以 ,得,
所以周長.
【題型】解答題
【結(jié)束】
18
【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級蔬菜大棚”.為了解大棚的面積與年利潤之間的關(guān)系,隨機(jī)抽取了其中的7個大棚,并對當(dāng)年的利潤進(jìn)行統(tǒng)計整理后得到了如下數(shù)據(jù)對比表:
大棚面積(畝) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利潤(萬元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且與有很強(qiáng)的線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)小明家的“超級蔬菜大棚”面積為8.0畝,估計小明家的大棚當(dāng)年的利潤為多少;
(Ⅲ)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?
參考數(shù)據(jù): , .
參考公式: , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com