【題目】2018屆寧夏育才中學(xué)高三上學(xué)期期末】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的.

1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

由表中的數(shù)據(jù)顯示, 之間存在著線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線(xiàn)方程.

參考公式:

【答案】(1)2;(2)5;(3)答案見(jiàn)解析.

【解析】試題分析:

1設(shè)各小長(zhǎng)方形的寬度為.由頻率分布直方圖中各小長(zhǎng)方形的面積總和為得到關(guān)于m的方程,解方程可得,即圖中各小長(zhǎng)方形的寬度為.

2以各組的區(qū)間中點(diǎn)值代表該組的取值,結(jié)合(1)中求得的結(jié)論可估計(jì)平均值為 .

3)由(2)可知空白欄中填.據(jù)此計(jì)算可得, ,結(jié)合回歸方程計(jì)算公式可得, ,則所求的回歸直線(xiàn)方程為.

試題解析:

1設(shè)各小長(zhǎng)方形的寬度為.

由頻率分布直方圖中各小長(zhǎng)方形的面積總和為,可知

,解得.

故圖中各小長(zhǎng)方形的寬度為.

2)由(1)知各小組依次是, , , , , ,其中點(diǎn)分別為, , , 對(duì)應(yīng)的頻率分別為 , , ,

故可估計(jì)平均值為 .

3)由(2)可知空白欄中填.

由題意可知, ,

,

,

根據(jù)公式,可求得 ,

.

所以所求的回歸直線(xiàn)方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))

(1)若,當(dāng)時(shí),試比較2的大;

(2)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4,坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系xOy中,橢圓C的方程為,以O為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為

(1)求直線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)Mx,y)為橢圓C上任意一點(diǎn),求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)中央電視臺(tái)《魅力中國(guó)城》欄目的三輪角逐,黔東南州以三輪競(jìng)演總分排名第一名問(wèn)鼎“最具人氣魅力城市”.如圖統(tǒng)計(jì)了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬(wàn)人次)的變化情況,從一個(gè)側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個(gè)圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個(gè)判斷中,錯(cuò)誤的是( )

A. 旅游總?cè)藬?shù)逐年增加

B. 2017年旅游總?cè)藬?shù)超過(guò)2015、2016兩年的旅游總?cè)藬?shù)的和

C. 年份數(shù)與旅游總?cè)藬?shù)成正相關(guān)

D. 從2014年起旅游總?cè)藬?shù)增長(zhǎng)加快

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若,求函數(shù)在的切線(xiàn)方程;

(2)若函數(shù)上為單調(diào)遞減函數(shù),求實(shí)數(shù)的最小值;

(3)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2018·石家莊一檢]已知函數(shù)

(1)若,求函數(shù)的圖像在點(diǎn)處的切線(xiàn)方程;

(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線(xiàn)均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線(xiàn)上.經(jīng)測(cè)量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營(yíng),打算在扇形區(qū)域外修建一條公路,分別與射線(xiàn)、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).

(1)試將公路的長(zhǎng)度表示為的函數(shù),并寫(xiě)出的取值范圍;

(2)試確定的值,使得公路的長(zhǎng)度最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知曲線(xiàn)的參數(shù)方程為,(為參數(shù),且),曲線(xiàn)的極坐標(biāo)方程為

)求的極坐標(biāo)方程與的直角坐標(biāo)方程.

)若上任意一點(diǎn),過(guò)點(diǎn)的直線(xiàn)于點(diǎn),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

(2)通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

參考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案