【題目】給出下列命題:
①存在實(shí)數(shù)α使
②直線 是函數(shù)y=sinx圖象的一條對稱軸.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的題號為( )
A.①②
B.②③
C.③④
D.①④

【答案】B
【解析】解:①∵ ,∴①錯誤;
②∵y=sinx圖象的對稱軸方程為 ,k=﹣1, ,∴②正確;
③根據(jù)余弦函數(shù)的性質(zhì)可得y=cos(cosx)的最大值為ymax=cos0=1,ymin=cos(cos1),其值域是[cos1,1],③正確;
④不妨令 ,滿足α,β都是第一象限角,且α>β,但tanα<tanβ,④錯誤;
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的正弦公式和正弦函數(shù)的對稱性的相關(guān)知識可以得到問題的答案,需要掌握兩角和與差的正弦公式:;正弦函數(shù)的對稱性:對稱中心;對稱軸

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知D(x0 , y0)為圓O:x2+y2=12上一點(diǎn),E(x0 , 0),動點(diǎn)P滿足 = + ,設(shè)動點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若動直線l:y=kx+m與曲線C相切,過點(diǎn)A1(﹣2,0),A2(2,0)分別作A1M⊥l于M,A2N⊥l于N,垂足分別是M,N,問四邊形A1MNA2的面積是否存在最值?若存在,請求出最值及此時k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸入的n為6,則輸出的p為(
A.8
B.13
C.29
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,已知點(diǎn)P(0, ),曲線C的參數(shù)方程為 (φ為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
(Ⅰ)判斷點(diǎn)P與直線l的位置關(guān)系并說明理由;
(Ⅱ)設(shè)直線l與曲線C的兩個交點(diǎn)分別為A,B,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標(biāo)原點(diǎn),a>0,b>0,若A、B、C三點(diǎn)共線,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設(shè)M為BD的中點(diǎn),求異面直線AD與CM所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,輸出i和S的值分別為(
A.2,15
B.2,7
C.3,15
D.3,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 ,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)P為曲線C上一點(diǎn),Q為直線l上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊答案