【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間上的最大值為,求的值;

(3)若,有不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)上是增函數(shù),在上是減函數(shù);(2);(3).

【解析】

試題分析:(1)先求函數(shù)的定義域,再求函數(shù)的導(dǎo)數(shù),解不等式可求函數(shù)的單調(diào)遞減區(qū)間與單調(diào)遞增區(qū)間;(2)因?yàn)?/span>,分分別討論函數(shù)的單調(diào)性求其最值即可;(3)時(shí)恒成立等價(jià)于,令,求函數(shù)的導(dǎo)數(shù),研究單調(diào)性,求其最小值,由求這即可.

試題解析: (1)易知定義域?yàn)?/span>

,令,得,

當(dāng)時(shí),;當(dāng)時(shí),,

所以上是增函數(shù),在上是減函數(shù).

(2)因?yàn)?/span>,,,

,則,從而上是增函數(shù),

,不合題意;

,則由,即,若,上是增函數(shù),由知不合題意,

,即

從而上是增函數(shù),在上為減函數(shù),

,

,所以,因?yàn)?/span>,所以所求的

(3)因?yàn)?/span>時(shí)恒成立,所以,

恒大于0,所以為增函數(shù),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1在區(qū)間上具有時(shí)間的單調(diào)性,求實(shí)數(shù)的取值范圍;

2,且函數(shù)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市園林局準(zhǔn)備綠化一塊直徑為的半圓空地,以外的地方種草,的內(nèi)接正方形為一水池,其余的地方種花,若為定值),,設(shè)的面積為,正方形的面積為

(1)用表示;

(2)當(dāng)為何值時(shí),取得最大值,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 、為常數(shù)). 

(Ⅰ)求函數(shù)在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)函數(shù)處取得極值,求函數(shù)的解析式;

(Ⅲ)當(dāng)時(shí),設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>的導(dǎo)函數(shù).

(1)求方程的解集;

(2)求函數(shù)的最大值與最小值;

(3)若函數(shù)在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)頂點(diǎn)分別為是, , .

(Ⅰ)求邊上的高所在的直線方程;

(Ⅱ)求過點(diǎn)且在兩坐標(biāo)軸上的截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

)求的單調(diào)區(qū)間和最小值;

)討論的大小關(guān)系;

)求的取值范圍,使得對任意成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對綿陽南山實(shí)驗(yàn)學(xué)校的500名教師的年齡進(jìn)行統(tǒng)計(jì)分析,年齡的頻率分布直方圖如圖所示,規(guī)定年齡在內(nèi)的為青年教師,內(nèi)的為中年教師,內(nèi)的為老年教師.

(1)求年齡,內(nèi)的教師人數(shù);

(2)現(xiàn)用分層抽樣的方法從中、青年中抽取18人進(jìn)行同課異構(gòu)課堂展示,求抽到年齡在內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,四邊形為矩形,平面平面.

(1)求證:平面;

(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角為,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案