【題目】已知點(diǎn)列為函數(shù)圖像上的點(diǎn),點(diǎn)列順次為軸上的點(diǎn),其中,對(duì)任意,點(diǎn)構(gòu)成以為頂點(diǎn)的等腰三角形.

1)證明:數(shù)列是等比數(shù)列;

2)若數(shù)列中任意連續(xù)三項(xiàng)能構(gòu)成三角形的三邊,求的取值范圍;

3)求證:對(duì)任意,是常數(shù),并求數(shù)列的通項(xiàng)公式.

【答案】1)證明見(jiàn)解析; 2 3)證明見(jiàn)解析;

【解析】

1)因?yàn)?/span>,所以,得到為等比數(shù)列;

2)要使數(shù)列中任意連續(xù)三項(xiàng)能構(gòu)成三角形的三邊,根據(jù)三角形三邊關(guān)系得到不等式,解得.

3)因?yàn)?/span>為常數(shù),所以,,,,,,都是公差為2的等差數(shù)列,分別求出通項(xiàng)公式即可;

解:(1,,是以為首項(xiàng),為公比的等比數(shù)列

2)由(1)知,要使數(shù)列中任意連續(xù)三項(xiàng)能構(gòu)成三角形的三邊,

,,

所以需滿(mǎn)足解得

3)依題意,,,,,

,,,為常數(shù)

,,,,,,,都是公差為2的等差數(shù)列,

,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動(dòng)點(diǎn)P滿(mǎn)足.又曲線上的點(diǎn)A、B滿(mǎn)足.

1)求曲線的方程;

2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

3)求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市三地A,B,C有直道互通.現(xiàn)甲交警沿路線AB乙交警沿路線ACB同時(shí)從A地出發(fā),勻速前往B地進(jìn)行巡邏,并在B地會(huì)合后再去執(zhí)行其他任務(wù).已知AB=10km,AC=6km,BC=8km,甲的巡邏速度為5km/h,乙的巡邏速度為10km/h.

(1)求乙到達(dá)C地這一時(shí)刻的甲乙兩交警之間的距離;

(2)已知交警的對(duì)講機(jī)的有效通話(huà)距離不大于3km,從乙到達(dá)C地這一時(shí)刻算起,求經(jīng)過(guò)多長(zhǎng)時(shí)間,甲乙方可通過(guò)對(duì)講機(jī)取得聯(lián)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.

從數(shù)列中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱(chēng)之為數(shù)列的一個(gè)子數(shù)列.

設(shè)數(shù)列是一個(gè)首項(xiàng)為、公差為的無(wú)窮等差數(shù)列.

1)若,成等比數(shù)列,求其公比

2)若,從數(shù)列中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

3)若,從數(shù)列中取出第1項(xiàng)、第項(xiàng)(設(shè))作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)當(dāng)且僅當(dāng)為何值時(shí),該數(shù)列為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線,過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線、兩點(diǎn),當(dāng)最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,直線的極坐標(biāo)方程為,直線交圓兩點(diǎn),中點(diǎn).

1)求點(diǎn)軌跡的極坐標(biāo)方程;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,其中,為正實(shí)數(shù).

1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;

2)設(shè),證明:對(duì)任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7n mile以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55n mile處有一個(gè)雷達(dá)觀測(cè)站A,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距40n mile的位置B,經(jīng)過(guò)40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東(其中,)且與點(diǎn)A相距10n mile的位置C

I)求該船的行駛速度(單位:n mile /h;

II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點(diǎn),求ABM面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案