【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,某校在高中生中隨機(jī)抽取100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計 | |
男生 | 40 | ||
女生 | 30 | ||
合計 | 50 | 100 |
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為“喜歡數(shù)學(xué)”與性別有關(guān)?說明你的理由;
(3)若在接受調(diào)查的所有男生中按照“是否喜歡數(shù)學(xué)”進(jìn)行分層抽樣,現(xiàn)隨機(jī)抽取6人,再從6人中抽取3人,求至少有1人“不喜歡數(shù)學(xué)”的概率.
下面的臨界值表供參考:
0.05 | 0.010 | 0.005 | 0.001 | |
k | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中).
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】
(1)結(jié)合題中所給的條件完成列聯(lián)表即可;
(2)結(jié)合(1)中的列聯(lián)表結(jié)合題意計算的觀測值,即可確定喜歡數(shù)學(xué)是否與性別有關(guān);
(3)隨機(jī)抽取6人中,根據(jù)列聯(lián)表中數(shù)據(jù)按照分層抽樣原則,分別求出喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的人數(shù),用間接法求出3人都喜歡數(shù)學(xué)的概率,進(jìn)而得出結(jié)論.
(1)列聯(lián)表補(bǔ)充如下:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計 | |
男生 | 40 | 20 | 60 |
女生 | 10 | 30 | 40 |
合計 | 50 | 50 | 100 |
(2)由列聯(lián)表值的的結(jié)論可得的觀測值為:
,
則在犯錯誤的概率不超過0.001的前提下認(rèn)為“喜歡數(shù)學(xué)”與性別有關(guān);
(3)在接受調(diào)查的所有男生中按照“是否喜歡數(shù)學(xué)”進(jìn)行分層抽樣,
現(xiàn)隨機(jī)抽取6人,喜歡數(shù)學(xué)的有4人,不喜歡數(shù)學(xué)2人,
從6人中抽取3人,記至少有1人“不喜歡數(shù)學(xué)”為事件,
則,
所以從6人中抽取3人,記至少有1人“不喜歡數(shù)學(xué)”的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別是橢圓的左,右焦點,兩點分別是橢圓的上,下頂點,是等腰直角三角形,延長交橢圓于點,且的周長為.
(1)求橢圓的方程;
(2)設(shè)點是橢圓上異于的動點,直線與直分別相交于兩點,點,試問:的外接圓是否恒過軸上的定點(異于點)?若是,求該定點坐標(biāo);若否,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù),),以原點為極點,以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于,兩點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)圖象上不同兩點,,,處的切線的斜率分別是,,規(guī)定叫曲線在點與點之間的“彎曲度”,給出以下命題:
(1)函數(shù)圖象上兩點、的橫坐標(biāo)分別為1,2,則;
(2)存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);
(3)設(shè)點、是拋物線,上不同的兩點,則;
(4)設(shè)曲線上不同兩點,,,,且,若恒成立,則實數(shù)的取值范圍是;
以上正確命題的序號為__(寫出所有正確的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種型號的電視機(jī)零配件,為了預(yù)測今年月份該型號電視機(jī)零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度月份至月份該型號電視機(jī)零配件的銷售量及銷售單價進(jìn)行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:
月份 | ||||||
銷售單價(元) | ||||||
銷售量(千件) |
(1)根據(jù)1至月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號電視機(jī)零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價,才能使該月利潤達(dá)到最大(計算結(jié)果精確到)?
參考公式:回歸直線方程,其中.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓,、,為橢圓的左、右頂點.
設(shè)為橢圓的左焦點,證明:當(dāng)且僅當(dāng)橢圓上的點在橢圓的左、右頂點時,取得最小值與最大值.
若橢圓上的點到焦點距離的最大值為,最小值為,求橢圓的標(biāo)準(zhǔn)方程.
若直線與中所述橢圓相交于、兩點(、不是左、右頂點),且滿足,求證:直線過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“五四青年節(jié)”到來之際,啟東中學(xué)將開展一系列的讀書教育活動.為了解高二學(xué)生讀書教育情況,決定采用分層抽樣的方法從高二年級四個社團(tuán)中隨機(jī)抽取12名學(xué)生參加問卷調(diào)査.已知各社團(tuán)人數(shù)統(tǒng)計如下:
(1)若從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來自同一個社團(tuán)的概率;
(2)在參加問卷調(diào)查的12名學(xué)生中,從來自三個社團(tuán)的學(xué)生中隨機(jī)抽取3名,用表示從社團(tuán)抽得學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com