(本小題滿分12分)
在銳角中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,且
(1)求角的值;
(2)若,的面積為,求的值。

(1),。(Ⅱ)

解析試題分析:(Ⅰ)由a=2csinA及正弦定理得, sinA=2sinCsinA,得sinC= ,從而得到C值.
(Ⅱ)由面積公式得S= absinC= ×3×bsin = ,解方程求得邊長(zhǎng)b.
解:(1)由及正弦定理得,,…………………….4分
是銳角三角形,。           ………6分
(Ⅱ)由面積公式得,,,    ……….9分
由余弦定理得,,,。……….12分考點(diǎn):本題主要考查利用正弦定理解三角形,三角形面積公式的應(yīng)用,
點(diǎn)評(píng):解決該試題的關(guān)鍵是由a=2csinA及正弦定理得,sinA=2sinCsinA,并由此得到角C的正弦值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇。
(Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大。沟眯⊥芤宰疃虝r(shí)間與輪船相遇,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知在銳角△ABC中,a, b, c分別為角A、B、C所對(duì)的邊,向量,,.
(1)求角A的大小;
(2)若a=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角所對(duì)的邊分別為,且滿足, 
(1)求的面積;       (2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知銳角中內(nèi)角、的對(duì)邊分別為、、,且.
(1)求角的值;
(2)設(shè)函數(shù),圖象上相鄰兩最高點(diǎn)間的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)設(shè)的三邊長(zhǎng)分別為已知.
(1) 求邊的長(zhǎng);(2) 求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)如圖,△ABC中,,點(diǎn)D 在BC邊上,∠ADC=45°。
(1)求的大;(2)求AD的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知函數(shù)
(1)在銳角中,,,分別是角,的對(duì)邊;若, sin(AC)=sinC,求的面積.
(2)若,求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市O(如圖)的東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km ,并以10 km / h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到臺(tái)風(fēng)的侵襲?持續(xù)多長(zhǎng)時(shí)間?

查看答案和解析>>

同步練習(xí)冊(cè)答案