【題目】函數(shù) .
(1)求函數(shù) 的最小正周期;
(2)在 中, 分別為內(nèi)角 的對邊,且 , ,求 的面積的最大值.

【答案】
(1)解: ,

所以最小正周期為 .


(2)解: ,

得到 ,所以 ,所以 ,

所以 ,由于 ,所以 ,

解得 , 取等號,所以 的面積的最大值為 .


【解析】(1)利用二倍角公式化簡原函數(shù)得到關(guān)于x的正弦型函數(shù),根據(jù)正弦函數(shù)的周期公式求出即可。(2)利用三角形的面積公式結(jié)合同意可求出角A的值,再由余弦定理可求得 b2 + c2= 4 + b c,利用基本不等式可求出 b c ≤ 4 ,進而可得到△ A B C 的面積的最大值。
【考點精析】掌握基本不等式在最值問題中的應(yīng)用和二倍角的余弦公式是解答本題的根本,需要知道用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”;二倍角的余弦公式:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種水果的單個質(zhì)量在500g以上視為特等品.隨機抽取1000個該水果,結(jié)果有50個特等品.將這50個水果的質(zhì)量數(shù)據(jù)分組,得到下邊的頻率分布表.

(1)估計該水果的質(zhì)量不少于560g的概率;
(2)若在某批水果的檢測中,發(fā)現(xiàn)有15個特等品,據(jù)此估計該批水果中沒有達到特等品的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

函數(shù)的一條對稱軸是

函數(shù)的圖像關(guān)于點對稱;

正弦函數(shù)在第一象限為增函數(shù);

,則其中

其中正確的有____________.(填寫正確命題前面的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學(xué)生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下 列聯(lián)表:

(1)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為 ,試求隨機變量 的分布列和數(shù)學(xué)期望;
(2)若在犯錯誤的概率不超過 的前提下認為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的 的值應(yīng)為多少?請說明理由.附:獨立性檢驗統(tǒng)計量 ,其中 .
獨立性檢驗臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正四面體的“骰子”(四個面分別標有1,2,3,4四個數(shù)字),擲一次“骰子”三個側(cè)面的數(shù)字的和為“點數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為(1,2),點M的極坐標為 ,若直線l過點P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點,求|PA||PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系中,直線l的參數(shù)方程是(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.
(1)求直線l的極坐標方程;
(2)若直線l與曲線C相交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為( )

A. 15 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)兩個共軛復(fù)數(shù)的差是純虛數(shù);(2)兩個共軛復(fù)數(shù)的和不一定是實數(shù);(3)若復(fù)數(shù)a+bi(a,b∈R)是某一元二次方程的根,則a﹣bi是也一定是這個方程的根;(4)若z為虛數(shù),則z的平方根為虛數(shù),
其中正確的個數(shù)為(
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習冊答案