橢圓上任意一點到兩焦點的距離分別為d1、d2,焦距為2c,若d1、2c、d2成等差數(shù)列,則橢圓的離心率為   
【答案】分析:先設長軸為2a,焦距為2c,再在橢圓上取一個特殊點,如左頂點.由題意可知:a,c的關系式,由此可以導出該橢圓的離心率.
解答:解:設長軸為2a,焦距為2c,
在橢圓上取一個特殊點,如左頂點A.
由題意得:d1=a-c,d2=a+c,
則d1+d2=4c,2a=4c,
整理得,
∴e=
故答案為:
點評:本題考查等差數(shù)列和橢圓的離心率,難度不大,只需細心運算就行,注意雙曲線和橢圓的區(qū)別與聯(lián)系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線x2=
1
mn
y
異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省韶關市高三調研測試理科數(shù)學試卷(解析版) 題型:選擇題

已知橢圓與雙曲線的焦點相同,且橢圓上任意一點到兩焦點的距離之和為,那么橢圓的離心率等于( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省韶關市高三調研測試文科數(shù)學試卷(解析版) 題型:選擇題

已知橢圓與雙曲線的焦點相同,且橢圓上任意一點到兩焦點的距離之和為,那么橢圓的離心率等于( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省高二上學期期中考試理科數(shù)學卷 題型:填空題

橢圓上任意一點到兩焦點的距離分別為,焦距為,若、、成等差數(shù)列,則橢圓的離心率為           

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年五校聯(lián)合教學調研數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓C:的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1以拋物線的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案