【題目】平面直角坐標(biāo)系中有16個(gè)格點(diǎn)(i,j),其中0≤i≤3,0≤j≤3.若在這16個(gè)點(diǎn)中任取n個(gè)點(diǎn),這n個(gè)點(diǎn)中總存在4個(gè)點(diǎn),這4個(gè)點(diǎn)是一個(gè)正方形的頂點(diǎn),求n的最小值.
【答案】11.
【解析】
分兩步來(lái)證明:先找到10個(gè)點(diǎn),它們中的任意四點(diǎn)不能構(gòu)成正方形的頂點(diǎn),再根據(jù)抽屜原理證明任意的11個(gè)點(diǎn),一定存在4個(gè)點(diǎn)為正方形的四個(gè)頂點(diǎn).
存在下面的10點(diǎn)即:
點(diǎn)(0,0),(1,0),(2,0),(2,1),(3,1),(0,2),(3,2),(0,3),(1,3),(3,3),
其中任意4個(gè)點(diǎn)不能構(gòu)成正方形的頂點(diǎn),故.
下證:任意11點(diǎn)中,一定存在4個(gè)點(diǎn)為正方形的四個(gè)頂點(diǎn).
因?yàn)楣踩?/span>11個(gè)點(diǎn),分兩種情況討論:
(1)有一行有4個(gè)點(diǎn)(設(shè)為),則余下三行共有7個(gè)點(diǎn),
由抽屜原理知余下三行中必有一行至少有3個(gè)點(diǎn)(設(shè)為),
因,分布在兩行,
若該兩行相鄰或中間隔一行,則存在四個(gè)點(diǎn),它們?yōu)檎叫蔚乃膫(gè)頂點(diǎn);
若該兩行間隔兩行,如圖,不妨設(shè)為線(xiàn)段上的格點(diǎn),為線(xiàn)段上的格點(diǎn),對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,
余下4個(gè)點(diǎn)分布在中間兩行,若線(xiàn)段上有兩個(gè)整點(diǎn),則它們和中的兩點(diǎn)構(gòu)成正方形的頂點(diǎn),否則線(xiàn)段上至少有3個(gè)點(diǎn),則其中必有兩個(gè)格點(diǎn)與中的兩點(diǎn)構(gòu)成正方形的頂點(diǎn).
(2)任意一行都沒(méi)有4個(gè)點(diǎn),則各行的格點(diǎn)數(shù)分別為,故4行中必有相鄰兩行各有3個(gè)格點(diǎn),這6個(gè)格點(diǎn)中必存在4個(gè)格點(diǎn),它們構(gòu)成正方形的頂點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著疫情的有效控制,人們的生產(chǎn)生活逐漸向正常秩序恢復(fù),位于我區(qū)的某著名賞花園區(qū)重新開(kāi)放.據(jù)統(tǒng)計(jì)硏究,近期每天賞花的人數(shù)大致符合以下數(shù)學(xué)模型.以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù),以表示第個(gè)時(shí)刻離開(kāi)園區(qū)的人數(shù),設(shè)定每15分鐘為一個(gè)計(jì)算單位,上午8點(diǎn)15分作為第1個(gè)計(jì)算人數(shù)單位,即點(diǎn)30分作為第2個(gè)計(jì)算單位,即:依次類(lèi)推,把一天內(nèi)從上午8點(diǎn)到下午5點(diǎn)分成36個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù))
(1)試分別計(jì)算當(dāng)天12:30至13:30這一小時(shí)內(nèi),進(jìn)入園區(qū)的人數(shù)和離開(kāi)園區(qū)的游客人數(shù).
(2)請(qǐng)問(wèn),從12點(diǎn)(即)開(kāi)始,園區(qū)內(nèi)總?cè)藬?shù)何時(shí)達(dá)到最多?并說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年初,一場(chǎng)新冠肺炎疫情突如其來(lái),在黨中央強(qiáng)有力的領(lǐng)導(dǎo)下,全國(guó)各地的醫(yī)務(wù)工作者迅速馳援湖北,以大無(wú)畏的精神沖在了抗擊疫情的第一線(xiàn),迅速控制住疫情.但國(guó)外疫情嚴(yán)峻,輸入性病例逐漸增多,為了鞏固我國(guó)的抗疫成果,保護(hù)國(guó)家和人民群眾的生命安全,我國(guó)三家生物高科技公司各自組成A、B、C三個(gè)科研團(tuán)隊(duì)進(jìn)行加急疫苗研究,其研究方向分別是滅活疫苗、核酸疫苗和全病毒疫苗,根據(jù)這三家的科技實(shí)力和組成的團(tuán)隊(duì)成員,專(zhuān)家預(yù)測(cè)這A、B、C三個(gè)團(tuán)隊(duì)未來(lái)六個(gè)月中研究出合格疫苗并用于臨床接種的概率分別為,,,且三個(gè)團(tuán)隊(duì)是否研究出合格疫苗相互獨(dú)立.
(1)求六個(gè)月后A,B兩個(gè)團(tuán)隊(duì)恰有一個(gè)研究出合格疫苗并用于臨床接種的概率;
(2)設(shè)六個(gè)月后研究出合格疫苗并用于臨床接種的團(tuán)隊(duì)個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l:和橢圓:相交于點(diǎn),
(1)當(dāng)直線(xiàn)l過(guò)橢圓的左焦點(diǎn)和上頂點(diǎn)時(shí),求直線(xiàn)l的方程
(2)點(diǎn)在上,若,求面積的最大值:
(3)如果原點(diǎn)O到直線(xiàn)l的距離是,證明:為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).
(1)求證:平面平面;
(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某地有一塊半徑為R的扇形AOB公園,其中O為扇形所在圓的圓心,AOB=,OA,OB,為公園原有道路.為滿(mǎn)足市民觀賞和健身的需要,市政部門(mén)擬在上選取一點(diǎn)M,新建道路OM及與OA平行的道路MN(點(diǎn)N在線(xiàn)段OB上),設(shè)AOM=.
(1)如何設(shè)計(jì),才能使市民從點(diǎn)O出發(fā)沿道路OM,MN行走至點(diǎn)N所經(jīng)過(guò)的路徑最長(zhǎng)?請(qǐng)說(shuō)明理由;
(2)如何設(shè)計(jì),才能使市民從點(diǎn)A出發(fā)沿道路,MN行走至點(diǎn)N所經(jīng)過(guò)的路徑最長(zhǎng)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,,是軸的正半軸上一點(diǎn),交橢圓于,且,的內(nèi)切圓半徑為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)和圓相切,且與橢圓交于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某原料在市場(chǎng)上從2013年至2019年這7年中每年的平均價(jià)格(單位:千元/噸)數(shù)據(jù):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
平均價(jià)格 (單位:千元/噸) |
(
(2)以(1)的結(jié)論為依據(jù),預(yù)測(cè)2032年該原料價(jià)格.預(yù)估該原料價(jià)格在哪一年突破1萬(wàn)元/噸?
參考數(shù)據(jù):,,,
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列滿(mǎn)足,且存在常數(shù),使得對(duì)任意的都有,則稱(chēng)數(shù)列為“k控?cái)?shù)列”.
(1)若公差為d的等差數(shù)列是“2控?cái)?shù)列”,求d的取值范圍;
(2)已知公比為的等比數(shù)列的前n項(xiàng)和為,數(shù)列與都是“k控?cái)?shù)列”,求q的取值范圍(用k表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com