【題目】甲、乙兩位同學(xué)參加詩(shī)詞大會(huì),設(shè)甲、乙兩人每道題答對(duì)的概率分別為.假定甲、乙兩位同學(xué)答題情況互不影響,且每人各次答題情況相互獨(dú)立.

(1)用表示甲同學(xué)連續(xù)三次答題中答對(duì)的次數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)設(shè)為事件“甲、乙兩人分別連續(xù)答題三次,甲同學(xué)答對(duì)的次數(shù)比乙同學(xué)答對(duì)的次數(shù)恰好多2”,求事件發(fā)生的概率.

【答案】(1)分布列見(jiàn)解析,;(2).

【解析】

1)先由題意,得到服從二項(xiàng)分布,以及的所有可能的取值,求出對(duì)應(yīng)的概率,即可得出分布列與數(shù)學(xué)期望;

(2)先設(shè)為乙連續(xù)3次答題中答對(duì)的次數(shù),由題意得到服從二項(xiàng)分布,根據(jù)二項(xiàng)分布的概率計(jì)算公式,即可求出結(jié)果.

(1)由題意知

的所有可能的取值為0,1,2,3,

;

;

,

所以的分布列為

0

1

2

3

數(shù)學(xué)期望.

(或.)

(2)設(shè)為乙連續(xù)3次答題中答對(duì)的次數(shù),

由題意知,

,

,

所以

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù):

(I)當(dāng)時(shí),求的最小值;

(II)對(duì)于任意的都存在唯一的使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的左、右焦點(diǎn)分別為,離心率為,點(diǎn)在橢圓C上,且,F1MF2的面積為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)已知直線l與橢圓C交于A,B兩點(diǎn),,若直線l始終與圓相切,求半徑r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系下,已知圓O和直線

1求圓O和直線l的直角坐標(biāo)方程;

2當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是某地區(qū)2009年至2018年芯片產(chǎn)業(yè)投資額 (單位:億元)的散點(diǎn)圖,為了預(yù)測(cè)該地區(qū)2019年的芯片產(chǎn)業(yè)投資額,建立了與時(shí)間變量的四個(gè)線性回歸模型.根據(jù)2009年至2018年的數(shù)據(jù)建立模型①;根據(jù)2010年至2017年的數(shù)據(jù)建立模型②;根據(jù)2011年至2016年的數(shù)據(jù)建立模型③;根據(jù)2014年至2018年的數(shù)據(jù)建立模型④.則預(yù)測(cè)值更可靠的模型是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭為了解冬季用電量(度)與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某5天的用電量與當(dāng)天氣溫,并制作了對(duì)照表,經(jīng)過(guò)統(tǒng)計(jì)分析,發(fā)現(xiàn)氣溫在一定范圍內(nèi)時(shí),用電量與氣溫具有線性相關(guān)關(guān)系:

0

1

2

3

4

(度)

15

12

11

9

8

1)求出用電量關(guān)于氣溫的線性回歸方程;

2)在這5天中隨機(jī)抽取兩天,求至少有一天用電量低于10(度)的概率.

(附:回歸直線方程的斜率和截距的最小二乘法估計(jì)公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假定一個(gè)彈珠(設(shè)為質(zhì)點(diǎn),半徑忽略不計(jì))的運(yùn)行軌跡是以小球(半徑)的中心為右焦點(diǎn)的橢圓,已知橢圓的右端點(diǎn)到小球表面最近的距離是1,橢圓的左端點(diǎn)到小球表面最近的距離是5.

.

1)求如圖給定的坐標(biāo)系下橢圓的標(biāo)準(zhǔn)方程;

2)彈珠由點(diǎn)開(kāi)始繞橢圓軌道逆時(shí)針運(yùn)行,第一次與軌道中心的距離是時(shí),彈珠由于外力作用發(fā)生變軌,變軌后的軌道是一條直線,稱該直線的斜率為“變軌系數(shù)”,求的取值范圍,使彈珠和小球不會(huì)發(fā)生碰撞.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖北省第二屆(荊州)園林博覽會(huì)于2019928日至1128日在荊州園博園舉辦,本屆園林博覽會(huì)以“輝煌荊楚,生態(tài)園博”為主題,展示荊州生態(tài)之美,文化之韻,吸引更多優(yōu)秀企業(yè)來(lái)荊投資,從而促進(jìn)荊州經(jīng)濟(jì)快速發(fā)展.在此次博覽會(huì)期間,某公司帶來(lái)了一種智能設(shè)備供采購(gòu)商洽談采購(gòu),并決定大量投放荊州市場(chǎng).已知該種設(shè)備年固定研發(fā)成本為50萬(wàn)元,每生產(chǎn)一臺(tái)需另投入80元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備萬(wàn)臺(tái)且全部售完,每萬(wàn)臺(tái)的銷售收入(萬(wàn)元)與年產(chǎn)量(萬(wàn)臺(tái))滿足如下關(guān)系式:.

(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)臺(tái))的函數(shù)解析式;(利潤(rùn)=銷售收入-成本)

(2)當(dāng)年產(chǎn)量為多少萬(wàn)臺(tái)時(shí),該公司獲得的年利潤(rùn)最大?并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,點(diǎn)M、N分別在AB1BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1④B1D1⊥MN,其中,

正確命題的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案