【題目】選修4-4:極坐標與參數(shù)方程
在極坐標系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標方程;
(2)當時,求直線l與圓O公共點的一個極坐標.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,點在傾斜角為的直線上,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的方程為.
(1)寫出的參數(shù)方程及的直角坐標方程;
(2)設(shè)與相交于兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標系中,利用求動點軌跡方程的方法,可以求出過點,且法向量為的直線(點法式)方程為:,化簡得.類比以上方法,在空間直角坐標系中,經(jīng)過點,且法向量為的平面的方程為(。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當a=2時,求函數(shù)g(x)的零點;
(2)若函數(shù)g(x)有四個零點,求a的取值范圍;
(3)在(2)的條件下,記g(x)的四個零點分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)數(shù)列{an}的前n項和為Sn=10n﹣n2,求數(shù)列{|an|}的前n項和.
(2)已知等差數(shù)列{an}滿足a2=0,a6+a8=﹣10.求數(shù)列{}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,解不等式;
(2)畫出該函數(shù)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間(不用證明);
(3)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為創(chuàng)建國家級文明城市,某城市號召出租車司機在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機,他們參加“愛心送考”的次數(shù)統(tǒng)計如圖所示.
(1)求該出租車公司的司機參加“愛心送考”的人均次數(shù);
(2)從這200名司機中任選兩人,設(shè)這兩人參加送考次數(shù)之差的絕對值為隨機變量,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.
(1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左,右焦點分別為,若雙曲線上存在點,使,則該雙曲線的離心率范圍為( )
A. (1,1) B. (1,1) C. (1,1] D. (1,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com