已知函數(shù).
(1)當(dāng)時,求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.

(1)上是增函數(shù) (2)

解析試題分析:
(1)對函數(shù)求導(dǎo),求導(dǎo)函數(shù)大于0和小于0的解集,該函數(shù)的導(dǎo)函數(shù)為二次函數(shù),且含有參數(shù),可以通過判斷該二次函數(shù)的圖像的開口零點個數(shù)等確定導(dǎo)函數(shù)大于0和小于0的解集,進而得到單調(diào)區(qū)間.
(2)通過(1)可以得時,函數(shù)在區(qū)間[1,2]的單調(diào)性得到最大值求出8(并判斷是否符合),a<0時,繼續(xù)通過討論f(x)的導(dǎo)函數(shù),通過對導(dǎo)函數(shù)(為二次函數(shù))的開口 根的個數(shù) 根的大小與是否在區(qū)間[1,3]來確定原函數(shù)在區(qū)間[1,2]上的最值,進而得到a的值.
試題解析:
(1)    1分
因為,所以對任意實數(shù)恒成立,
所以是減函數(shù)       4分
(2)當(dāng)時,由(1)可知,在區(qū)間[1,2]是減函數(shù)
,(不符合舍去)       6分
當(dāng)時,的兩根       7分
①當(dāng),即時,在區(qū)間[1,2]恒成立,在區(qū)間[1,2]是增函數(shù),由
       9分
②當(dāng),即時 在區(qū)間[1,2]恒成立 在區(qū)間[1,2]是減函數(shù)
 ,(不符合舍去)       11分
③當(dāng),即時,在區(qū)間是減函數(shù),在區(qū)間是增函數(shù);所以 無解       13分
綜上,       14分
考點:導(dǎo)數(shù) 最值 單調(diào)性 二次函數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

巳知函數(shù),其中.
(1)若是函數(shù)的極值點,求的值;
(2)若在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)記,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中N*,aR,e是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點;
(2)若對任意N*,均有兩個極值點,一個在區(qū)間(1,4)內(nèi),另一個在區(qū)間[1,4]外,求a的取值范圍;
(3)已知k,mN*,k<m,且函數(shù)在R上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求函數(shù)的最大值;
(2)設(shè),證明:有最大值,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)),在時取得極值.
(1)求實數(shù)的取值范圍;
(2)當(dāng)時,關(guān)于的方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(3)數(shù)列滿足),,數(shù)列的前項和為,
求證:,是自然對數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若,是否存在a,bR,y=f(x)為偶函數(shù).如果存在.請舉例并證明你的結(jié)論,如果不存在,請說明理由;
〔II)若a=2,b=1.求函數(shù)在R上的單調(diào)區(qū)間;
(III )對于給定的實數(shù)成立.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個零點,求滿足條件的最小正整數(shù)a的值;
(3)若方程f(x)=c有兩個不相等的實數(shù)根x1、x2,求證:f′>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=x,h(x)=,設(shè)F(x)=f(x)-h(x),求F(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊答案