(本小題14分) 已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時,函數(shù)取極值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤2;
(3)求證:曲線y=f(x)上不存在兩個不同的點A,B,使過A, B兩點的切線都垂直于直線AB。
(1),b=0
(2)因為,那么可以運用函數(shù)單調(diào)性放縮來得到解決問題。
(3)對于探索性試題的分析,假設(shè)存在,然后根據(jù)過A,B兩點的切線平行,得到斜率相等,同時根據(jù)過A,B兩點的切線都垂直于直線AB
,則斜率之積為-1,得到方程,通過方程無解說明假設(shè)不成立,進(jìn)而得到證明。
解析試題分析:(1)函數(shù)是定義在R上的奇函數(shù),
∴即對于恒成立,
∴b=0
∴
∵x=-1時,函數(shù)取極值1,∴3a+c=0,-a-c=1
解得:
(2)
<0,∴
(3)設(shè)
∵過A,B兩點的切線平行,
∴可得
∵,∴,則
由于過A點的切線垂直于直線AB,
∴
∴∵△=-12<0
∴關(guān)于x1的方程無解。
∴曲線上不存在兩個不同的點A,B,過A,B兩點的切線都垂直于直線AB
考點:本試題考查了導(dǎo)數(shù)的運用。
點評:運用導(dǎo)數(shù)研究函數(shù)的問題主要涉及到了函數(shù)的單調(diào)性和函數(shù)的極值以及最值問題,那么同時要熟練的掌握導(dǎo)數(shù)的幾何意義表示切線方程。而對于不等式的恒成立問題,一般將其轉(zhuǎn)換為分離參數(shù)的思想來求解不等式的成立,主要是通過最值來完成證明,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分12分)設(shè)M是由滿足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實根;②函數(shù)的導(dǎo)數(shù)滿足0<<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實根;
(2)判斷函數(shù)是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意,
證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共14分)已知函數(shù)其中常數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時,若函數(shù)有三個不同的零點,求m的取值范圍;
(3)設(shè)定義在D上的函數(shù)在點處的切線方程為當(dāng)時,若在D內(nèi)恒成立,則稱P為函數(shù)的“類對稱點”,請你探究當(dāng)時,函數(shù)是否存在“類對稱點”,若存在,請最少求出一個“類對稱點”的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com