(本小題滿分13分)
已知函數(shù)
(1)判斷的單調(diào)性;
(2)記若函數(shù)有兩個(gè)零點(diǎn),求證
(1)在遞增;
(2)由(1)可知,由題意:,
,兩式相減得:,即有,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/b/qe7fn2.png" style="vertical-align:middle;" />,所以(9分)
現(xiàn)考察,令,設(shè),則,所以在遞增,所以, (11分)
即,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/c/fni5w1.png" style="vertical-align:middle;" />,
所以
解析試題分析:(1)原函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/9/1kon23.png" style="vertical-align:middle;" />,, (2分)
記
, (3分)
當(dāng)時(shí),,在遞減,
當(dāng)時(shí),,在遞增,
,即當(dāng),在遞增(6分)
(2)由(1)可知,由題意:,
,兩式相減得:,即有,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/b/qe7fn2.png" style="vertical-align:middle;" />,所以(9分)
現(xiàn)考察,令,設(shè),則,所以在遞增,所以, (11分)
即,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/c/fni5w1.png" style="vertical-align:middle;" />,
所以 (13分)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的極值。
點(diǎn)評(píng):(1)判斷函數(shù)的單調(diào)性,一定要先求函數(shù)的定義域。(2)本題主要考查導(dǎo)數(shù)知識(shí)的運(yùn)用以及函數(shù)的單調(diào)性,考查學(xué)生分析問題、解決問題的能力,有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)在處有極小值。
(1)求函數(shù)的解析式;
(2)若函數(shù)在只有一個(gè)零點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分) 已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時(shí),函數(shù)取極值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤2;
(3)求證:曲線y=f(x)上不存在兩個(gè)不同的點(diǎn)A,B,使過A, B兩點(diǎn)的切線都垂直于直線AB。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,有一邊長為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對(duì)稱軸,以線段的中點(diǎn)為頂點(diǎn)的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個(gè)直角梯形.
(Ⅰ)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求陰影部分的邊緣線的方程;
(Ⅱ)如何畫出切割路徑,使得剩余部分即直角梯形的面積最大?
并求其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和最小值;
(Ⅱ)討論與的大小關(guān)系;
(Ⅲ)是否存在,使得對(duì)任意成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(x2+ax+2)ex,(x,a∈R).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的圖象在點(diǎn)A(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)時(shí),求函數(shù)f(x)的極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
① 求這個(gè)函數(shù)的導(dǎo)數(shù);
② 求這個(gè)函數(shù)的圖象在點(diǎn)x=1處的切線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com