(本題滿分12分)已知是函數(shù)的一個極值點.
(Ⅰ)求的值;
(Ⅱ)當,時,證明:
(1)(2)要證明差的絕對值小于等于e,只要證明差介于-e和e之間即可,求解函數(shù)的 最值的差可知。
解析試題分析:(Ⅰ)解:, 2分
由已知得,解得.
當時,,在處取得極小值.
所以. 4分
(Ⅱ)證明:由(Ⅰ)知,,.
當時,,在區(qū)間單調(diào)遞減;
當時,,在區(qū)間單調(diào)遞增.
所以在區(qū)間上,的最小值為. 8分
又,,
所以在區(qū)間上,的最大值為. 10分
對于,有.
所以. 12分
考點:函數(shù)的最值
點評:解決的關(guān)鍵是利用導數(shù)判定單調(diào)性,并能結(jié)合函數(shù)的最值來證明不等式,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)在處有極小值。
(1)求函數(shù)的解析式;
(2)若函數(shù)在只有一個零點,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(e為自然對數(shù)的底數(shù)).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對于任意,不等式恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f(x)=x-(a>0),g(x)=2lnx+bx且直線y=2x-2與曲線y=g(x)相切.
(1)若對[1,+)內(nèi)的一切實數(shù)x,小等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當a=l時,求最大的正整數(shù)k,使得對[e,3](e=2.71828是自然對數(shù)的底數(shù))內(nèi)的任意k個實數(shù)x1,x2,,xk都有成立;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題14分) 已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時,函數(shù)取極值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤2;
(3)求證:曲線y=f(x)上不存在兩個不同的點A,B,使過A, B兩點的切線都垂直于直線AB。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和最小值;
(Ⅱ)討論與的大小關(guān)系;
(Ⅲ)是否存在,使得對任意成立?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com