【題目】平面直角坐標系xoy中,直線l的參數(shù)方程是 (t為參數(shù)),以射線ox為極軸建立極坐標系,曲線C的極坐標方程是 +ρ2sin2θ=1.
(1)求曲線C的直角坐標方程;
(2)求直線l與曲線C相交所得的弦AB的長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進制數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1= ,an+1= (n∈N*).
(Ⅰ)求證:數(shù)列{ }是等差數(shù)列,并求{an}的通項公式;
(Ⅱ)設(shè)bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1 , 試比較an與8Sn的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子里裝有三張卡片,分別標記有數(shù)字1,2,3,這三張卡片除標記的數(shù)字外完全相同.隨機有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為a,b,c.求:
(1)“抽取的卡片上的數(shù)字滿足a+b=c”的概率;
(2)“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,.
(1).求圖中的值; 并根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(2).若這100名學(xué)生語文成績某些分數(shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分數(shù)段的人數(shù)()之比如上右表所示,求數(shù)學(xué)成績在之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 在橢圓C: 上,F(xiàn)為右焦點,PF⊥垂直于x軸,A,B,C,D為橢圓上的四個動點,且AC,BD交于原點O.
(1)求橢圓C的方程;
(2)判斷直線l: 與橢圓的位置關(guān)系;
(3)設(shè)A(x1 , y1),B(x2 , y2)滿足 = ,判斷kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若,曲線在處的切線過點,求的值;
②若,求在區(qū)間上的最大值.
(2)設(shè)在, 兩處取得極值,求證: , 不同時成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲,乙兩種產(chǎn)品均需用兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需用原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲,乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)可獲得最大利潤為__________萬元.
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com