【題目】如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知S的身高約為米(將眼睛距地面的距離按米處理)

(1) 求攝影者到立柱的水平距離和立柱的高度;

(2) 立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內(nèi)旋轉(zhuǎn)攝影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

【答案】(1) 攝影者到立柱的水平距離為3米,立柱高為米. (2) 攝影者可以將彩桿全部攝入畫面.

【解析】

試題(1) 如圖,不妨將攝影者眼部設(shè)為S點,做SC垂直O(jiān)B于C,

故在中,可求得BA=3,即攝影者到立柱的水平距離為3米……… 3分

由SC=3,中,可求得

即立柱高為米. -------------- 6分

(2) (注:若直接寫當(dāng)時,最大,并且此時,得2分)

連結(jié)SM,SN, 在SON和SOM中分別用余弦定理,

……8分

故攝影者可以將彩桿全部攝入畫面. …………………………………………… 10分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓上任意一點,點,線段的中垂線交于點.

(1)求動點的軌跡方程;

(2)若動直線與圓相切,且與動點的軌跡交于點、,求面積的最大值(為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次調(diào)查中,甲、乙、丙、丁四位同學(xué)閱讀量有如下關(guān)系:同學(xué)甲、丙閱讀量之和與乙、丁閱讀量之和相同,同學(xué)甲、乙閱讀量之和大于丙、丁閱讀量之和,丁的閱讀量大于乙、丙閱讀量之和.那么這四名同學(xué)按閱讀量從大到小的排序依次為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)關(guān)于的不等式的解集為,求的值;

(2)若函數(shù)的圖象與軸圍成圖形的面積不小于50,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為正三角形,且BCCD2,CDBC,將△ABC沿BC翻折.

1)當(dāng)AD2時,求證:平面ABD⊥平面BCD;

2)若點A的射影在△BCD內(nèi),且直線AB與平面ACD所成角為60°,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若曲線在點處的切線與軸平行,求;

(2)當(dāng)時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家物流公司都需要進行貨物中轉(zhuǎn),由于業(yè)務(wù)量擴大,現(xiàn)向社會招聘貨車司機,其日工資方案如下:甲公司,底薪80元,司機毎中轉(zhuǎn)一車貨物另計4元:乙公司無底薪,中轉(zhuǎn)40車貨物以內(nèi)(含40車)的部分司機每車計6元,超出40車的部分司機每車計7元.假設(shè)同一物流公司的司機一填中轉(zhuǎn)車數(shù)相同,現(xiàn)從這兩家公司各隨機選取一名貨車司機,并分別記錄其50天的中轉(zhuǎn)車數(shù),得到如下頻數(shù)表:

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

15

10

10

5

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

5

10

10

20

5

1)現(xiàn)從記錄甲公司的50天貨物中轉(zhuǎn)車數(shù)中隨機抽取3天的中轉(zhuǎn)車數(shù),求這3天中轉(zhuǎn)車數(shù)都不小于40的概率;

2)若將頻率視為概率,回答下列兩個問題:

①記乙公司貨車司機日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望EX);

②小王打算到甲、乙兩家物流公司中的一家應(yīng)聘,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為小王作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.

(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,四邊形ABCD為平行四邊形,△PCD為正三角形,∠BAD=30°,AD=4,AB=2,平面PCD⊥平面ABCD,EPC中點.

1)證明:BEPC;

2)求多面體PABED的體積.

查看答案和解析>>

同步練習(xí)冊答案