精英家教網 > 高中數學 > 題目詳情

【題目】某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數關系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求實驗室這一天的最大溫差;
(Ⅱ)若要求實驗室溫度不高于11℃,則在哪段時間實驗室需要降溫?

【答案】解:(Ⅰ)∵f(t)=10﹣ =10﹣2sin( t+ ),t∈[0,24),

t+ ,故當 t+ = 時,及t=14時,函數取得最大值為10+2=12,

t+ = 時,即t=2時,函數取得最小值為10﹣2=8,

故實驗室這一天的最大溫差為12﹣8=4℃.

(Ⅱ)由題意可得,當f(t)>11時,需要降溫,由(Ⅰ)可得f(t)=10﹣2sin( t+ ),

由10﹣2sin( t+ )>11,求得sin( t+ )<﹣ ,即 t+ ,

解得10<t<18,即在10時到18時,需要降溫.


【解析】(Ⅰ)利用兩角和差的正弦公式化簡函數解析式為f(t)10﹣2sin( t+ ),t∈[0,24),利用正弦函數的定義域和值域求得f(x)的最大值及最小值,可得實驗室這一天的最大溫差.(Ⅱ)由題意可得,當f(t)>11時,需要降溫,由f(t)>11,求得sin( t+ )<﹣ ,即 t+ ,解得t的范圍,可得結論.
【考點精析】根據題目的已知條件,利用函數y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個正方體中, ①BM與ED平行;
②CN與BE是異面直線;
③CN與BM成60°角;
④DM與BN垂直.
以上四個命題中,正確命題的序號是(

A.③
B.③④
C.①③
D.①③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點,則直線DE與平面BB1C1C所成的角為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了促進學生的全面發(fā)展,鄭州市某中學重視學生社團文化建設,現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”,“演講社”三個金牌社團中抽取6人組成社團管理小組,有關數據見表(單位:人):

社團名稱

成員人數

抽取人數

話劇社

50

a

創(chuàng)客社

150

b

演講社

100

c


(1)求a,b,c的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔任管理小組組長,求這2人來自不同社團的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=f(x)的定義域為(﹣a,0)∪(0,a)(0<a<1),其圖象上任意一點P(x,y)滿足x2+y2=1,則給出以下四個命題:①函數y=f(x)一定是偶函數;②函數y=f(x)可能是奇函數;③函數y=f(x)在(0,a)上單調遞增④若函數y=f(x)是偶函數,則其值域為(a2 , 1)其中正確的命題個數為(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在x軸上,離心率為 ,且經過點M(4,1),直線l:y=x+m交橢圓于不同的兩點A,B. (Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線l不過點M,求證:直線MA、MB與x軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三棱錐ABCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O為BD的中點,P、Q分別為線段AO,BC上的動點,且AP=CQ,求三棱錐PQCO體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 若函數g(x)=f(x)﹣k有3個零點,則實數k的取值范圍為( )
A.(0,+∞)
B.(0,1)
C.[1,+∞)
D.[1,2)

查看答案和解析>>

同步練習冊答案