【題目】甲、乙、丙、丁、戊和己6人圍坐在一張正六邊形的小桌前,每邊各坐一人.已知:①甲與乙正面相對;②丙與丁不相鄰,也不正面相對.若己與乙不相鄰,則以下選項正確的是(

A.若甲與戊相鄰,則丁與己正面相對B.甲與丁相鄰

C.戊與己相鄰D.若丙與戊不相鄰,則丙與己相鄰

【答案】D

【解析】

先安排甲和乙,再安排丙和丁,此時排除B 、C,余下依次討論AD即可.

解:

由題意可知,甲、乙位置的示意圖如圖(1),因此丙和丁的座位只可能是12,34,4321,由己和乙不相鄰可知,己只能在12,故丙和丁只能在34,43,如圖(2)和(3),由此可排除BC.對于A項,若甲與戊相鄰,則己與丁可能正面相對,也可能不正面相對,排除A.對于D項,若丙與戊不相鄰,則戊只能在丙的對面,則己與丙相鄰,正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】56日返校體檢中,學(xué)號為)的五位同學(xué)的體重增加量是集合中的元素,并滿足,則這五位同學(xué)的體重增加量所有可能的情況有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時,的值域恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間.如果函數(shù)上的正函數(shù),則實數(shù)的取值范圍為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點分別是棱,的中點,是側(cè)面內(nèi)一點,若 平面,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足:

1)求的值;

2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;

3)設(shè)假設(shè)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷中正確的是( )

A. “若,則有實數(shù)根”的逆否命題是假命題

B. ”是“直線與直線平行”的充要條件

C. 命題“”是真命題

D. 已知命題,使得;命題,則是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為,四周空白的寬度為,兩欄之間的中縫空白的寬度為.

1)設(shè)矩形欄目寬度為,求矩形廣告面積的表達(dá)式

2)怎樣確定廣告的高與寬的尺寸(單位:),能使矩形廣告面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對它們一一進(jìn)行測試,直至找到所有次品.

1)若在第5次測試時找到最后一件次品,則共有多少種不同的測試方法?

2)若至多測試5次就能找到所有次品,則共有多少種不同的測試方法?

查看答案和解析>>

同步練習(xí)冊答案