【題目】已知△ABC的三邊長都是有理數(shù).

(1)求證:cos A是有理數(shù);

(2)求證:對任意正整數(shù)n,cos nA是有理數(shù).

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)設(shè)出三邊為根據(jù)三者為有理數(shù)可推斷出 是有理數(shù),進(jìn)而根據(jù)有理數(shù)集對于除法的具有封閉性推斷出 也為有理數(shù),根據(jù)余弦定理可知,進(jìn)而可知是有理數(shù).
(2)先證當(dāng) 時,根據(jù)(1)中的結(jié)論可知是有理數(shù),當(dāng)n=2時,根據(jù)余弦的二倍角推斷出也是有理數(shù),再假設(shè)時,結(jié)論成立,進(jìn)而可知均是有理數(shù),用余弦的兩角和公式分別求得,根據(jù)均是有理數(shù)推斷出,即 時成立.最后綜合原式得證.

試題解析:(1)設(shè)三邊長分別為ab,c,cos A,

ab,c是有理數(shù),

b2c2a2是有理數(shù),分母2bc為正有理數(shù),又有理數(shù)集對于除法具有封閉性,

必為有理數(shù),∴cos A是有理數(shù).

(2)①當(dāng)n=1時,顯然cos A是有理數(shù);

當(dāng)n=2時,∵cos 2A=2cos2A-1,

因?yàn)閏os A是有理數(shù),∴cos 2A也是有理數(shù);

②假設(shè)當(dāng)nk(k≥2)時,結(jié)論成立,即cos kA,cos(k-1)A均是有理數(shù).

當(dāng)nk+1時,cos(k+1)A=cos kAcos A-sin kAsin A

=cos kAcos A [cos(kAA)-cos(kAA)]

=cos kAcos Acos(k-1)Acos(k+1)A

解得:cos(k+1)A=2cos kAcos A-cos(k-1)A

∵cos A,cos kA,cos(k-1)A均是有理數(shù),

∴2cos kAcos A-cos(k-1)A是有理數(shù),

∴cos(k+1)A是有理數(shù).即當(dāng)nk+1時,結(jié)論成立.

綜上所述,對于任意正整數(shù)n,cos nA是有理數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 的中點(diǎn), 是棱上的點(diǎn), ,

(Ⅰ)求證:平面平面

(Ⅱ)若三棱錐的體積是四棱錐體積的,設(shè),試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角A,B,C的對邊分別是且滿足

求角B的大。

(2)若的面積為為,的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機(jī)抽取名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在楊輝三角形中,從第2行開始,除1以外,其它每一個數(shù)值是它上面的兩個數(shù)值之和,該三角形數(shù)陣開頭幾行如圖所示.

(1)在楊輝三角形中是否存在某一行,使該行中三個相鄰的數(shù)之比是3∶4∶5?若存在,試求出是第幾行;若不存在,請說明理由;

(2)已知n,r為正整數(shù),且n≥r+3.求證:任何四個相鄰的組合數(shù)C,C,C,C不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓方程為,離心率為, 是橢圓的兩個焦點(diǎn), 為橢圓上一點(diǎn)且, 的面積為.

(1)求橢圓的方程;

(2)已知點(diǎn),直線不經(jīng)過點(diǎn)且與橢圓交于兩點(diǎn),若直線與直線的斜率之和為1,證明直線過定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)的極值;

(2)若函數(shù)在[1,3]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學(xué)生對學(xué)校某項(xiàng)教改試驗(yàn)的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為,則回歸直線方程為.

查看答案和解析>>

同步練習(xí)冊答案