【題目】已知直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點, 軸的正半軸為極軸建立的極坐標(biāo)系中,圓的極坐標(biāo)方程為

(1)求直線被圓截得的弦長;

(2)若點的坐標(biāo)為,直線與圓交于兩點,求的值.

【答案】(1);(2)7.

【解析】試題分析:(1)將直線的參數(shù)方程消去參數(shù),化為普通方程得,圓的極坐標(biāo)方程化為普通方程可得,圓心到直線的距離,由勾股定理能求出直線被圓截得的弦長;(2)把代入,得,由根據(jù)直線參數(shù)方程的幾何意義結(jié)合韋達(dá)定理能求出的值.

試題解析:(1)將直線的參數(shù)方程化為普通方程可得,而圓的極坐標(biāo)方程可化為,化為普通方程可得,

則圓心到直線的距離為,

故直線被圓截得的弦長為

(2)把代入,可得

(*).

設(shè)是方程(*)的兩個根,則,故

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,AC⊥BC,且AC=BC=2

(1)求證:AM⊥平面EBC
(2)(文)求三棱錐C﹣ABE的體積.
(3)(理)求二面角A﹣EB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方體ABCD﹣A1B1C1D1中,E,M,N分別是BC,AE,CD1的中點,AD=AA1=a,AB=2a.求證:MN∥平面ADD1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標(biāo)軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的一個短軸端點及兩個焦點構(gòu)成的三角形的面積為,圓C方程為.

(1)求橢圓及圓C的方程;

(2)過原點O作直線l與圓C交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的圖像在處的切線與軸平行,求的極值;

(2)若函數(shù)內(nèi)單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知拋物線的焦點坐標(biāo)為,過的直線交拋物線兩點,直線分別與直線相交于兩點

(1)求拋物線的方程;

(2)證明△ABO與MNO的面積之比為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組;第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.

(1)若成績大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測試中成績良好的人數(shù);
(2)設(shè)m,n表示該班某兩位同學(xué)的百米測試成績,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時氣球的高是60m,則河流的寬度BC等于( )

A.m
B.m
C.m
D.m

查看答案和解析>>

同步練習(xí)冊答案