【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間與最值;
(2)若方程在區(qū)間內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.(其中為自然對(duì)數(shù)的底數(shù))
【答案】(1)單調(diào)增區(qū)間是;單調(diào)減區(qū)間是,,無(wú)最小值;(2)
【解析】
(1)求出后討論其符號(hào)可得函數(shù)的單調(diào)區(qū)間和最值.
(2)原方程等價(jià)于在區(qū)間內(nèi)有兩個(gè)不相等的實(shí)根,也就是函數(shù)與的圖象在區(qū)間內(nèi)有兩個(gè)不同交點(diǎn),結(jié)合(1)中函數(shù)的單調(diào)性可得實(shí)數(shù)的取值范圍.
(1)∵,, ∴ ,
∴令,即,解得:.
令,即,解得:,
∴函數(shù)的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是,
∴當(dāng)時(shí),,無(wú)最小值.
(2)∵方程
∴方程在區(qū)間內(nèi)有兩個(gè)不相等的實(shí)根,
∴函數(shù)與的圖象在區(qū)間內(nèi)有兩個(gè)不同交點(diǎn),
又由(1)知函數(shù)在上單調(diào)遞增;在上單調(diào)遞減 ,
∴當(dāng)時(shí),,,
又,∴,
∴,∴,
∴實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A,B是R中兩個(gè)子集,對(duì)于,定義: .①若;則對(duì)任意;②若對(duì)任意,則;③若對(duì)任意,則A,B的關(guān)系為.上述命題正確的序號(hào)是______. (請(qǐng)?zhí)顚?xiě)所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,,.
(1) 求證:;
(2) 求直線與平面所成角的正弦值;
(3) 線段上是否存在點(diǎn),使平面若存在,求出;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列四個(gè)命題中,其中真命題是( )
①“若,則”的逆命題;
②“若,則”的否命題;
③“若,則方程有實(shí)根”的逆否命題;
④“等邊三角形的三個(gè)內(nèi)角均為”的逆命題.
A. ①② B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋?/span>﹣∞,0)∪(0,+∞),f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),則實(shí)數(shù)a的取值范圍是( )
A.a<0B.a≤0C.a≤1D.a≤0或a=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿足函數(shù)關(guān)系自然對(duì)數(shù)的底數(shù),k,b為常數(shù)),若該食品在0℃的保鮮時(shí)間是192小時(shí),在22℃的保鮮時(shí)間是48小時(shí),求該食品在33℃的保鮮時(shí)間.
(2)某藥廠生產(chǎn)一種口服液,按藥品標(biāo)準(zhǔn)要求其雜質(zhì)含量不能超過(guò)0.01%,若初始時(shí)含雜質(zhì)0.2%,每次過(guò)濾可使雜質(zhì)含量減少三分之一,問(wèn)至少應(yīng)過(guò)濾幾次才能使得這種液體達(dá)到要求?(已知,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運(yùn)動(dòng) | 不喜好體育運(yùn)動(dòng) | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)概率不超過(guò)的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由.
(參考公式: )
臨界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中在今年的期末考試歷史成績(jī)中隨機(jī)抽取名考生的筆試成績(jī),作出其頻率分布直方圖如圖所示,已知成績(jī)?cè)?/span>中的學(xué)生有1名,若從成績(jī)?cè)?/span>和兩組的所有學(xué)生中任取2名進(jìn)行問(wèn)卷調(diào)查,則2名學(xué)生的成績(jī)都在中的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com