【題目】為認(rèn)真貫徹落實(shí)黨中央國務(wù)院決策部署,堅(jiān)持房子是用來住的,不是用來炒的定位,堅(jiān)持調(diào)控政策的連續(xù)性和穩(wěn)定性,進(jìn)一步穩(wěn)定某省市商品住房市場,該市人民政府辦公廳出臺(tái)了相關(guān)文件來控制房價(jià),并取得了一定效果,下表是20192月至6月以來該市某城區(qū)的房價(jià)均值數(shù)據(jù):

(月份)

2

3

4

5

6

(房價(jià)均價(jià):千元/平方米)

9.80

9.70

9.30

9.20

已知:

1)若變量、具有線性相關(guān)關(guān)系,求房價(jià)均價(jià)(千元/平方米)關(guān)于月份的線性回歸方程

2)根據(jù)線性回歸方程預(yù)測該市某城區(qū)7月份的房價(jià).

(參考公式:用最小二乘法求線性回歸方程的系數(shù)公式

【答案】129.02千元/平方米.

【解析】

1)根據(jù)表格中的數(shù)據(jù),可求得,,,,進(jìn)而求得,寫出回歸方程.

2)利用(1)所求得的線性回歸方程,將,代入求解.

1)由表格中的數(shù)據(jù),可得,因?yàn)?/span>,所以,,,

所以,,

所以線性回歸方程為

2)利用(1)所求得的線性回歸方程,可預(yù)測7月份的房價(jià)

(千元/平方米).

所以該市某城區(qū)7月份的房價(jià)為9.02千元/平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,直線經(jīng)過點(diǎn),直線經(jīng)過點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).

()分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;

()若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;

()()的條件下,判斷四邊形能否為矩形,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,試討論的單調(diào)性;

2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).

1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.

2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】臨近開學(xué)季,某大學(xué)城附近的一款網(wǎng)紅書包銷售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷售經(jīng)驗(yàn),這款書包在未來1個(gè)月(按30天計(jì)算)的日銷售量(個(gè))與時(shí)間(天)的關(guān)系如下表所示:

時(shí)間(/天)

1

4

7

11

28

日銷售量(/個(gè))

196

184

172

156

88

未來1個(gè)月內(nèi),前15天每天的價(jià)格(元/個(gè))與時(shí)間(天)的函數(shù)關(guān)系式為(且為整數(shù)),后15天每天的價(jià)格(元/個(gè))與時(shí)間(天)的函數(shù)關(guān)系式為(且為整數(shù)).

1)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)(個(gè))與(天)的關(guān)系式;

2)試預(yù)測未來1個(gè)月中哪一天的日銷售利潤最大,最大利潤是多少?

3)在實(shí)際銷售的第1周(7天),商家決定每銷售1件商品就捐贈(zèng)元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間(天)的增大而增大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;

2)若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,兩兩垂直,,分別是的中點(diǎn).

1)證明:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐,記二面角的平面角為,直線與平面所成的角為,直線所成的角為,則( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案