精英家教網 > 高中數學 > 題目詳情

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關系,現在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數分別為m,n,求事件“m,n均不小于25”的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出y關于x的線性回歸方程x+;

(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

【答案】見解析

【解析】(1)(枚舉法)所有的基本事件為(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10個.

設“m,n均不小于25”為事件A,則事件A包含的基本事件為(25,30),(25,26),(30,26),共3個,

故由古典概型概率公式得P(A)=.

(2)由數據得,另3天的平均數=12,=27,3 =972,3 2=432,xiyi=977,x=434,

所以,

=27-×12=-3,

所以y關于x的線性回歸方程為x-3.

(3)依題意得,

當x=10時,=22,|22-23|<2;

當x=8時,=17,|17-16|<2,

所以(2)中所得到的線性回歸方程是可靠的.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=,x[1,+∞).

(1)當a=時,判斷并證明f(x)的單調性;

(2)當a=-1時,求函數f(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線C:y2=4x,過點A(1,2)作拋物線C的弦AP,AQ.

(1)若AP⊥AQ,證明:直線PQ過定點,并求出定點的坐標;

(2)假設直線PQ過點T(5,-2),請問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個數,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=aln x+ (a∈R).

(1)當a=1時,求f(x)在x∈[1,+∞)內的最小值;

(2)若f(x)存在單調遞減區(qū)間,求a的取值范圍;

(3)求證ln(n+1)> +…+ (n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數上是增函數,求實數的取值范圍;

(2)若函數上的最小值為3,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, , .

(1)當時,求的極值;

(2)令,求函數的單調減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱柱中,底面是矩形,且, , ,若的中點,且

)求證: 平面;

)線段上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】市出租車的現行計價標準是:路程在2 km以內(含2 km)按起步價8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85(元/km))

(1)將某乘客搭乘一次出租車的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數;

(2)某乘客的行程為16 km,他準備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?

(現實中要計等待時間且最終付費取整數,本題在計算時都不予考慮)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓中心在坐標原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.

(1)若=6,求k的值;

(2)求四邊形AEBF面積的最大值.

查看答案和解析>>

同步練習冊答案