【題目】設(shè)橢圓C: 的一個頂點與拋物線的焦點重合, 分別是橢圓的左、右焦點,且離心率,過橢圓右焦點的直線l與橢圓C交于兩點.
(1)求橢圓C的方程;
(2)若,求直線l的方程;
(3)若是橢圓C經(jīng)過原點O的弦, ,求證: 為定值.
【答案】(1) ;(2) y= (x-1)或y=- (x-1);(3)見解析.
【解析】試題分析:(1)由題意,橢圓的標準方程為+=1;(2)設(shè)直線l的方程為y=k(x-1)(k≠0),·=x1x2+y1y2=-2,利用韋達定理,解得答案;(3)|MN|=|x1-x2|,|AB|=|x3-x4|,代入韋達定理計算,得到答案。
試題解析:
(1)橢圓的頂點為(0,),即b=,e==,∴a=2,∴橢圓的標準方程為+=1.
(2)由題可知,直線l與橢圓必相交.
①當直線斜率不存在時,經(jīng)檢驗不合題意.
②當斜率存在時,設(shè)直線l的方程為y=k(x-1)(k≠0),
且M(x1,y1),N(x2,y2).
由得(3+4k2)x2-8k2x+4k2-12=0,x1+x2=,x1x2=,
·=x1x2+y1y2=x1x2+k2[x1x2-(x1+x2)+1]
=+k2
==-2,解得k=±,
故直線l的方程為y= (x-1)或y=- (x-1).
(3)證明:設(shè)M(x1,y1),N(x2,y2),A(x3,y3),B(x4,y4),
由(2)可得|MN|=|x1-x2|
=
=
=,
由消去y并整理得x2=,
|AB|=|x3-x4|=4,
∴==4,為定值.
科目:高中數(shù)學 來源: 題型:
【題目】已知:三棱錐中,側(cè)面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點在平面內(nèi).
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設(shè)二面角的大小為,求的值;
(Ⅲ)求點到面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1)
C. 函數(shù)f(x)有極大值f(2)和極小值f(-2) D. 函數(shù)f(x)有極大值f(-2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,準線為,三個點, , 中恰有兩個點在上.
(1)求拋物線的標準方程;
(2)過的直線交于, 兩點,點為上任意一點,證明:直線, , 的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某大型景區(qū)有兩條直線型觀光路線, , ,點位于的平分線上,且與頂點相距1公里.現(xiàn)準備過點安裝一直線型隔離網(wǎng) (分別在和上),圍出三角形區(qū)域,且和都不超過5公里.設(shè), (單位:公里).
(Ⅰ)求的關(guān)系式;
(Ⅱ)景區(qū)需要對兩個三角形區(qū)域, 進行綠化.經(jīng)測算, 區(qū)城每平方公里的綠化費用是區(qū)域的兩倍,試確定的值,使得所需的總費用最少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:min)的頻率分布直方圖,若將日均課外閱讀時間不低于60 min的學生稱為“書蟲”,低于60 min的學生稱為“懶蟲”,
(1)求x的值并估計全校3 000名學生中“書蟲”大概有多少名學生?(將頻率視為概率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“書蟲”與性別有關(guān):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究患肺癌與是否吸煙有關(guān),某腫瘤機構(gòu)隨機抽取了40人做相關(guān)調(diào)查,其中不吸煙人數(shù)與吸煙人數(shù)相同,已知吸煙人數(shù)中,患肺癌與不患肺癌的比為;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.
(1)現(xiàn)從患肺癌的人中用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人進行調(diào)查,求這兩人都是吸煙患肺癌的概率;
(2)是否有99.9%的把握認為患肺癌與吸煙有關(guān)?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點的雙曲線 的右焦點為 ,右頂點為 ,( 為原點)
(1)求雙曲線 的方程;
(2)若直線 : 與雙曲線恒有兩個不同的交點 和 ,且,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線關(guān)于軸對稱,頂點在坐標原點,直線經(jīng)過拋物線的焦點.
(1)求拋物線的標準方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線過軸上一定點,并求出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com