【題目】已知橢圓 的離心率為 ,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點(diǎn)A作圓M的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(不同于點(diǎn)A),直線AB,AD的斜率分別為k1 , k2
(1)求橢圓C的方程;
(2)當(dāng)r變化時(shí),①求k1k2的值;②試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由.

【答案】
(1)

解:由題設(shè)知, ,又a2﹣b2=c2

解得a=2,b=1.

故所求橢圓C的方程是


(2)

解:AB:y=k1x+1,則有 ,化簡得

對于直線AD:y=k2x+1,同理有

于是k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的兩實(shí)根,故k1k2=1.

考慮到r→1時(shí),D是橢圓的下頂點(diǎn),B趨近于橢圓的上頂點(diǎn),故BD若過定點(diǎn),則猜想定點(diǎn)在y軸上.

,得 ,于是有

直線BD的斜率為 ,

直線BD的方程為 ,

令x=0,得 ,

故直線BD過定點(diǎn)


【解析】(1)利用已知條件求出a,b即可求解橢圓C的方程.(2)AB:y=k1x+1,則有 ,化簡得 ,直線AD:y=k2x+1,同理有 ,推出k1 , k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的兩實(shí)根,故k1k2=1.考慮到r→1時(shí),D是橢圓的下頂點(diǎn),B趨近于橢圓的上頂點(diǎn),故BD若過定點(diǎn),則猜想定點(diǎn)在y軸上.聯(lián)立直線與橢圓方程,求出相關(guān)點(diǎn)的坐標(biāo),求出直線BD的方程,推出直線BD過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的莖葉圖(圖一)為高三某班50名學(xué)生的化學(xué)考試成績,圖(二)的算法框圖中輸入的ai為莖葉圖中的學(xué)生成績,則輸出的m,n分別是(
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程序框圖如圖:如果上述程序運(yùn)行的結(jié)果S=1320,那么判斷框中應(yīng)填入(
A.K<10
B.K≤10
C.K<11
D.K≤11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知D(x0 , y0)為圓O:x2+y2=12上一點(diǎn),E(x0 , 0),動(dòng)點(diǎn)P滿足 = + ,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若動(dòng)直線l:y=kx+m與曲線C相切,過點(diǎn)A1(﹣2,0),A2(2,0)分別作A1M⊥l于M,A2N⊥l于N,垂足分別是M,N,問四邊形A1MNA2的面積是否存在最值?若存在,請求出最值及此時(shí)k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入p=5,q=6,則輸出a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的圖象如圖所示,為了得到g(x)=cos2x的圖象,則只需將f(x)的圖象(
A.向右平移 個(gè)單位長度
B.向右平移 個(gè)單位長度
C.向左平移 個(gè)單位長度
D.向左平移 個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C1:y2=8x的準(zhǔn)線與x軸交于點(diǎn)F1 , 焦點(diǎn)為F2 . 以F1 , F2為焦點(diǎn),離心率為 的橢圓記為C2 . (Ⅰ)求橢圓C2的方程;
(Ⅱ)設(shè)N(0,﹣2),過點(diǎn)P(1,2)作直線l,交橢圓C2于異于N的A、B兩點(diǎn).
(。┤糁本NA、NB的斜率分別為k1、k2 , 證明:k1+k2為定值.
(ⅱ)以B為圓心,以BF2為半徑作⊙B,是否存在定⊙M,使得⊙B與⊙M恒相切?若存在,求出⊙M的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸入的n為6,則輸出的p為(
A.8
B.13
C.29
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設(shè)M為BD的中點(diǎn),求異面直線AD與CM所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

同步練習(xí)冊答案