【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓,直線,過(guò)右焦點(diǎn)的直線與橢圓交于兩點(diǎn),線段的垂直平分線分別交直線和于點(diǎn).
(1)求弦長(zhǎng)的最小值;
(2)在直線上任取一點(diǎn),當(dāng)的斜率時(shí),求的值.
【答案】(1);(2).
【解析】
試題分析:(1)求橢圓的弦長(zhǎng),可分類(lèi),當(dāng)斜率不存在時(shí),得弦長(zhǎng)為,當(dāng)斜率存在時(shí),設(shè)直線的方程為,將的方程代入橢圓方程,得的一元二次方程:,從而有(也可解出),弦長(zhǎng)為,這樣可以把弦長(zhǎng)用表示出來(lái),求出其最小值或證明它大于,說(shuō)明是最小值;(2)由向量的數(shù)量積定義可得,由于,由(1)可得中點(diǎn)的坐標(biāo),從而得方程,又得點(diǎn)坐標(biāo),最后得長(zhǎng),得數(shù)量積.
試題解析:(1)①當(dāng)軸時(shí),;
②當(dāng)與軸不垂直時(shí),設(shè)直線的方程為,將的方程代入橢圓方程,得,
則的坐標(biāo)為,
且.
綜合①、②知,弦長(zhǎng)的最小值為
(2)若,則的坐標(biāo)為,
點(diǎn)的坐標(biāo)為,
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴從區(qū)間內(nèi)任取一個(gè)實(shí)數(shù),設(shè)事件表示“函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn)”,求事件發(fā)生的概率;
⑵若聯(lián)系擲兩次一顆均勻的骰子(骰子六個(gè)面上標(biāo)注的點(diǎn)數(shù)分別為)得到的點(diǎn)數(shù)分別為和,記事件表示“在上恒成立”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有__________.(寫(xiě)出所有正確說(shuō)法的序號(hào))
①已知關(guān)于的不等式的角集為,則實(shí)數(shù)的取值范圍是.
②已知等比數(shù)列的前項(xiàng)和為,則、、也構(gòu)成等比數(shù)列.
③已知函數(shù)(其中且)在上單調(diào)遞減,且關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)解,則.
④已知,且,則的最小值為.
⑤在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式恒成立,求實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱(chēng)為“低碩族”,否則稱(chēng)為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳族的人數(shù) | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補(bǔ)全頻率分布直方圖并求的值(直接寫(xiě)結(jié)果);
(2)從年齡段在的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中至少有1人年齡在歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品進(jìn)貨價(jià)每件50元,據(jù)市場(chǎng)調(diào)查,當(dāng)銷(xiāo)售價(jià)格(每件x元)在50≤ x ≤80時(shí),每天售出的件數(shù)為P=,每天獲得的利潤(rùn)為y(元)
(1)寫(xiě)出關(guān)于x的函數(shù)y的表達(dá)式;
(2)若想每天獲得的利潤(rùn)最多,問(wèn)售價(jià)應(yīng)定為每件多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體中,分別是的中點(diǎn),,過(guò)三點(diǎn)的的平面截去長(zhǎng)方體的一個(gè)角后.得到如圖所示的幾何體,且這個(gè)幾何體的體積為.
(1)求證:平面;
(2)求的長(zhǎng);
(3)在線段上是否存在點(diǎn),使直線與垂直,如果存在,求線段的長(zhǎng),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC.E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在與橢圓交于兩點(diǎn)的直線:,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com