【題目】給出以下命題:

①雙曲線的漸近線方程為y=±x;

②命題p:“xR,sinx+≥2”是真命題;

③已知線性回歸方程為=3+2x,當(dāng)變量x增加2個單位,其預(yù)報值平均增加4個單位;

④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;

⑤設(shè),則

則正確命題的序號為________(寫出所有正確命題的序號).

【答案】①③⑤

【解析】分析:①由雙曲線標(biāo)準(zhǔn)方程可得漸近線方程;②根據(jù)均值不等式求最值等號成立的條件可得結(jié)果;③根據(jù)線性回歸方程的含義可得結(jié)果;④根據(jù)正態(tài)分布的對稱性可得結(jié)果;⑤根據(jù)對數(shù)函數(shù)的單調(diào)性可得結(jié)果.

詳解:①由可以解得雙曲線的漸近線方程為,正確;

②命題不能保證為正,故錯誤;

③根據(jù)線性回歸方程的含義,正確;

,可得,所以,故錯誤;

⑤函數(shù)為增函數(shù),因?yàn)?/span>,所以,故正確.故答案為①③⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)aR).

1)討論yfx)的單調(diào)性;

2)若函數(shù)fx)有兩個不同零點(diǎn)x1,x2,求實(shí)數(shù)a的范圍并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.根據(jù)該問題設(shè)計(jì)程序框圖如下,若輸入,則輸出的值是( )

A. 8 B. 9 C. 12 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個典型函數(shù),若則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意都有;②對任意都有;③對任意,都有 ;④對任意,都有.其中所有真命題的序號是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校20名同學(xué)的數(shù)學(xué)和英語成績?nèi)缦卤硭荆?/span>

將這20名同學(xué)的兩顆成績繪制成散點(diǎn)圖如圖:

根據(jù)該校以為的經(jīng)驗(yàn),數(shù)學(xué)成績與英語成績線性相關(guān).已知這名學(xué)生的數(shù)學(xué)平均成績?yōu)?/span>,英語平均成績,考試結(jié)束后學(xué)校經(jīng)過調(diào)查發(fā)現(xiàn)學(xué)號為同學(xué)與學(xué)號為同學(xué)(分別對應(yīng)散點(diǎn)圖中的)在英語考試中作弊,故將兩位同學(xué)的兩科成績?nèi)∠?/span>.

取消兩位作弊同學(xué)的兩科成績后,求其余同學(xué)的數(shù)學(xué)成績與英語成績的平均數(shù);

取消兩位作弊同學(xué)的兩科成績后,求數(shù)學(xué)成績x與英語成績y的線性回歸直線方程,并據(jù)此估計(jì)本次英語考試學(xué)號為8的同學(xué)如果沒有作弊的英語成績.(結(jié)果保留整數(shù))

附:位同學(xué)的兩科成績的參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,設(shè)線段A1C與平面ABC1D1交于點(diǎn)Q,求證:B,Q,D1三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在寒假社會實(shí)踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):

日期

1月11號

1月12號

1月13號

1月14號

1月15號

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;

(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報1月16號的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,

1)當(dāng)m=4時,求,

2)若,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗(yàn)證這個結(jié)論,某興趣小組隨機(jī)抽取了100名魔方愛好者進(jìn)行調(diào)查,得到的部分?jǐn)?shù)據(jù)如表所示:已知在全部100人中隨機(jī)抽取1人抽到喜歡盲擰的概率為

喜歡盲擰

不喜歡盲擰

總計(jì)

10

20

總計(jì)

100

表(1)

并邀請這100人中的喜歡盲擰的人參加盲擰三階魔方比賽,其完成時間的頻率分布如表所示:

完成時間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40]

頻率

0.2

0.4

0.3

0.1

表(2)

(Ⅰ)將表(1)補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?

(Ⅱ)現(xiàn)從表(2)中完成時間在[30,40] 內(nèi)的人中任意抽取2人對他們的盲擰情況進(jìn)行視頻記錄,記完成時間在[30,40]內(nèi)的甲、乙、丙3人中恰有一人被抽到為事件A,求事件A發(fā)生的概率.

(參考公式:,其中

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案