已知函數(shù),以點為切點作函數(shù)圖像的切線,直線與函數(shù)圖像及切線分別相交于,記.
(1)求切線的方程及數(shù)列的通項;
(2)設數(shù)列的前項和為,求證:.
(1)切線的方程為,數(shù)列的通項公式為;(2)詳見試題解析.
解析試題分析:(1)由導數(shù)的幾何意義,先對函數(shù)求導,求導函數(shù)在處的函數(shù)值,即得切線的斜率,最后由直線的點斜式方程即可求得切線的方程,進一步結合已知條件可得的坐標,由兩點間的距離公式可得數(shù)列的通項;(2)首先寫出數(shù)列的前項和的表達式,根據(jù)數(shù)列通項公式的結構特征選擇裂項相消法求和,進而可證明不等式.
試題解析:(1)對求導,得,則切線方程為:,即,易知,,
由知=.
(2)==,===<1.
考點:1.導數(shù)的幾何意義;2.數(shù)列通項公式及前項和的求法(裂項相消法);3.數(shù)列不等式的證明.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=lnx-ax(a∈R).
(1)求函數(shù)f(x)的單調區(qū)間;
(2)當a>0時,求函數(shù)f(x)在[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一矩形鐵皮的長為8 cm,寬為5 cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當a=2時,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調性;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=x3-ax2-ax,g(x)=2x2+4x+c.
(1)試問函數(shù)f(x)能否在x=-1時取得極值?說明理由;
(2)若a=-1,當x∈[-3,4]時,函數(shù)f(x)與g(x)的圖象有兩個公共點,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1處的切線方程.
(2)若不等式f(x)≤0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在與時都取得極值.
(1)求的值及的極大值與極小值;
(2)若方程有三個互異的實根,求的取值范圍;
(3)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,
(1)若,求曲線在處的切線方程;
(2)若對任意的,都有恒成立,求的最小值;
(3)設,,若,為曲線的兩個不同點,滿足,且,使得曲線在處的切線與直線AB平行,求證:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com