已知函數(shù),以點為切點作函數(shù)圖像的切線,直線與函數(shù)圖像及切線分別相交于,記
(1)求切線的方程及數(shù)列的通項;
(2)設數(shù)列的前項和為,求證:

(1)切線的方程為,數(shù)列的通項公式為;(2)詳見試題解析.

解析試題分析:(1)由導數(shù)的幾何意義,先對函數(shù)求導,求導函數(shù)處的函數(shù)值,即得切線的斜率,最后由直線的點斜式方程即可求得切線的方程,進一步結合已知條件可得的坐標,由兩點間的距離公式可得數(shù)列的通項;(2)首先寫出數(shù)列的前項和的表達式,根據(jù)數(shù)列通項公式的結構特征選擇裂項相消法求和,進而可證明不等式
試題解析:(1)對求導,得,則切線方程為:,即,易知,,
=
(2)=====<1.
考點:1.導數(shù)的幾何意義;2.數(shù)列通項公式及前項和的求法(裂項相消法);3.數(shù)列不等式的證明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=lnx-ax(a∈R).
(1)求函數(shù)f(x)的單調區(qū)間;
(2)當a>0時,求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一矩形鐵皮的長為8 cm,寬為5 cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當a=2時,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調性;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=x3ax2ax,g(x)=2x2+4xc.
(1)試問函數(shù)f(x)能否在x=-1時取得極值?說明理由;
(2)若a=-1,當x∈[-3,4]時,函數(shù)f(x)與g(x)的圖象有兩個公共點,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1處的切線方程.
(2)若不等式f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)當時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)時都取得極值.
(1)求的值及的極大值與極小值;
(2)若方程有三個互異的實根,求的取值范圍;
(3)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù), 
(1)若,求曲線處的切線方程;
(2)若對任意的,都有恒成立,求的最小值;
(3)設,,若,為曲線的兩個不同點,滿足,且,使得曲線處的切線與直線AB平行,求證:

查看答案和解析>>

同步練習冊答案