【題目】如圖,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,點M,N分別為A′B和B′C′的中點.
(1)證明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C為直二面角,求λ的值.
【答案】
(1)
證明:連接AB′、AC′,
由已知∠BAC=90°,AB=AC,
三棱柱ABC﹣A′B′C′為直三棱柱,
所以M為AB′中點,
又因為N為B′C′的中點,
所以MN∥AC′,
又MN平面A′ACC′,
因此MN∥平面A′ACC′;
法二:取A′B′的中點P,連接MP、NP,
M、N分別為A′B、B′C′的中點,
所以MP∥AA′,NP∥A′C′,
所以MP∥平面A′ACC′,PN∥平面A′ACC′,
又MP∩NP=P,因此平面MPN∥平面A′ACC′,
而MN平面MPN,
因此MN∥平面A′ACC′.
(2)
解:以A為坐標原點,分別以直線AB、AC、AA′為x,y,z軸,建立直角坐標系,如圖,
設(shè)AA′=1,則AB=AC=λ,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1).
所以M( ),N( ),
設(shè) =(x1,y1,z1)是平面A′MN的法向量,
由 ,得 ,
可取 ,
設(shè) =(x2,y2,z2)是平面MNC的法向量,
由 ,得 ,
可取 ,
因為二面角A'﹣MN﹣C為直二面角,
所以 ,
即﹣3+(﹣1)×(﹣1)+λ2=0,
解得λ= .
【解析】(1)法一,連接AB′、AC′,說明三棱柱ABC﹣A′B′C′為直三棱柱,推出MN∥AC′,然后證明MN∥平面A′ACC′;
法二,取A′B′的中點P,連接MP、NP,推出MP∥平面A′ACC′,PN∥平面A′ACC′,然后通過平面與平面平行證MN∥平面A′ACC′.(2)以A為坐標原點,分別以直線AB、AC、AA′為x,y,z軸,建立直角坐標系,設(shè)AA′=1,推出A,B,C,A′,B′,C′坐標求出M,N,設(shè) =(x1 , y1 , z1)是平面A′MN的法向量,通過 ,取 ,設(shè) =(x2 , y2 , z2)是平面MNC的法向量,由 ,取 ,利用二面角A'﹣MN﹣C為直二面角,所以 ,解λ.
【考點精析】通過靈活運用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2007全運會上兩名射擊運動員甲、乙在比賽中打出如下成績:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個成績;并根據(jù)莖葉圖分析甲、乙兩人成績;
(2)分別計算兩個樣本的平均數(shù)和標準差,并根據(jù)計算結(jié)果估計哪位運動員的成績比較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標方程;
(2)若曲線截直線所得線段的中點坐標為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地鐵換乘站設(shè)有編號為,,,,的五個安全出口.若同時開放其中的兩個安全出口,疏散1000名乘客所需的時間如下:
安全出口編號 | , | , | , | , | , |
疏散乘客時間() | 186 | 125 | 160 | 175 | 145 |
則疏散乘客最快的一個安全出口的編號是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4﹣4:坐標系與參數(shù)方程
在直角坐標xOy中,圓C1:x2+y2=4,圓C2:(x﹣2)2+y2=4.
(1)在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓C1 , C2的極坐標方程,并求出圓C1 , C2的交點坐標(用極坐標表示);
(2)求圓C1與C2的公共弦的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.
(1)求函數(shù)的解析式;
(2)設(shè),若在時恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合Pn={1,2,…,n},n∈N* . 記f(n)為同時滿足下列條件的集合A的個數(shù):
①APn;②若x∈A,則2xA;③若x∈ A,則2x A.
(1)求f(4);
(2)求f(n)的解析式(用n表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com