【題目】某花卉企業(yè)引進了數(shù)百種不同品種的康乃馨,通過試驗田培育,得到了這些康乃馨種子在當?shù)丨h(huán)境下的發(fā)芽率,并按發(fā)芽率分為組:、、、加以統(tǒng)計,得到如圖所示的頻率分布直方圖.企業(yè)對康乃馨的種子進行分級,將發(fā)芽率不低于的種子定為“級”,發(fā)芽率低于但不低于的種子定為“級”,發(fā)芽率低于的種子定為“級”.
(Ⅰ)現(xiàn)從這些康乃馨種子中隨機抽取一種,估計該種子不是“級”種子的概率;
(Ⅱ)該花卉企業(yè)銷售花種,且每份“級”、“級”、“級”康乃馨種子的售價分別為元、元、元.某人在市場上隨機購買了該企業(yè)銷售的康乃馨種子兩份,共花費元,以頻率為概率,求的分布列和數(shù)學期望;
(Ⅲ)企業(yè)改進了花卉培育技術(shù),使得每種康乃馨種子的發(fā)芽率提高到原來的倍,那么對于這些康乃馨的種子,與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進后發(fā)芽率數(shù)據(jù)的方差是否發(fā)生變化?若發(fā)生變化,是變大了還是變小了?(結(jié)論不需要證明).
【答案】(Ⅰ);(Ⅱ)分布列詳見解析,數(shù)學期望為;(Ⅲ)方差變大了.
【解析】
(Ⅰ)利用頻率分布直方圖中矩形面積之和為,求出的值,再結(jié)合頻率分布直方圖以及對立事件的概率公式可求得所求事件的概率;
(Ⅱ)由題意可知,隨機變量的可能取值有、、、、,計算出隨機變量在不同取值下的概率,由此可列出隨機變量的分布列,進而可求得隨機變量的數(shù)學期望;
(Ⅲ)根據(jù)離散型隨機變量方差的性質(zhì)可得出結(jié)論.
(Ⅰ)設事件為:“從這些康乃馨種子中隨機抽取一種,且該種子不是“級”種子”,
由圖表,得,解得,
由圖表,知“級”種子的頻率為,
故可估計從這些康乃馨種子中隨機抽取一種,該種子是“級”的概率為.
因為事件與事件“從這些康乃馨種子中隨機抽取一種,且該種子是“級”種子”為對立事件,
所以事件的概率;
(Ⅱ)由題意,任取一顆種子,恰好是“級”康乃馨的概率為,
恰好是“級”康乃馨的概率為,
恰好是“級”的概率為.
隨機變量的可能取值有、、、、,
且,,
,,
.
所以的分布列為:
故的數(shù)學期望.
(Ⅲ)與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進后發(fā)芽率數(shù)據(jù)的方差變大了.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù), ).
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若曲線上的動點到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( )
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預測16日溫度要低于
D. 由折線圖能預測本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應的方案是:提高票價,并提高成本;
②圖(2)對應的方案是:保持票價不變,并降低成本;
③圖(3)對應的方案是:提高票價,并保持成本不變;
④圖(3)對應的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形中,,,,.把沿著翻折至的位置,平面,連結(jié),如圖2.
(1)當時,證明:平面平面;
(2)當三棱錐的體積最大時,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓的右焦點為,過的直線與相交于兩點,點滿足.
(1)當的傾斜角為時,求直線的方程;
(2)試探究在軸上是否存在定點,使得為定值?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學使用某品牌暖水瓶,其內(nèi)膽規(guī)格如圖所示.若水瓶內(nèi)膽壁厚不計,且內(nèi)膽如圖分為①②③④四個部分,它們分別為一個半球、一個大圓柱、一個圓臺和一個小圓柱體.若其中圓臺部分的體積為,且水瓶灌滿水后蓋上瓶塞時水溢出.記蓋上瓶塞后,水瓶的最大盛水量為,
(1)求;
(2)該同學發(fā)現(xiàn):該品牌暖水瓶盛不同體積的熱水時,保溫效果不同.為了研究保溫效果最好時暖水瓶的盛水體積,做以下實驗:把盛有最大盛水量的水的暖水瓶倒出不同體積的水,并記錄水瓶內(nèi)不同體積水在不同時刻的水溫,發(fā)現(xiàn)水溫(單位:℃)與時刻滿足線性回歸方程,通過計算得到下表:
倒出體積 | 0 | 30 | 60 | 90 | 120 |
擬合結(jié)果 | |||||
倒出體積 | 150 | 180 | 210 | … | 450 |
擬合結(jié)果 | … |
注:表中倒出體積(單位:)是指從最大盛水量中倒出的那部分水的體積.其中:
令.對于數(shù)據(jù),可求得回歸直線為,對于數(shù)據(jù),可求得回歸直線為.
(。┲赋的實際意義,并求出回歸直線的方程(參考數(shù)據(jù):);
(ⅱ)若與的交點橫坐標即為最佳倒出體積,請問保溫瓶約盛多少體積水時(盛水體積保留整數(shù),且取3.14)保溫效果最佳?
附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com