討論函數(shù)f(x)=ln(2x+3)+x2的單調(diào)性.

解:由題意可得:
所以當(dāng)時,f'(x)>0;
當(dāng)時,f'(x)<0;
當(dāng)時,f'(x)>0.
從而,f(x)分別在區(qū)間單調(diào)增加,在區(qū)間單調(diào)減少.
分析:由題意可得:.求出f'(x)>0時x的范圍;并且求出f'(x)<0時x的范圍;進而解決單調(diào)性問題.
點評:解決此類問題的關(guān)鍵是熟練掌握求導(dǎo)該生并且利用導(dǎo)數(shù)解決函數(shù)的單調(diào)區(qū)間問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax-
1x
,g(x)=lnx,(x>0,a∈R是常數(shù)).
(1)求曲線y=g(x)在點P(1,g(1))處的切線l.
(2)是否存在常數(shù)a,使l也是曲線y=f(x)的一條切線.若存在,求a的值;若不存在,簡要說明理由.
(3)設(shè)F(x)=f(x)-g(x),討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)設(shè)函數(shù)f(x)=alnx+
2
a
2
 
x
(a≠0)

(1)已知曲線y=f(x)在點(1,f(1))處的切線l的斜率為2-3a,求實數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)在(1)的條件下,求證:對于定義域內(nèi)的任意一個x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x2-2ax)ex,x>0
bx,x≤0
,g(x)=clnx+b,且x=
2
是函數(shù)y=f(x)的極值點.
(Ⅰ)當(dāng)b=-2時,求a的值,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b∈R時,函數(shù)y=f(x)-m有兩個零點,求實數(shù)m的取值范圍.
(Ⅲ)是否存在這樣的直線l,同時滿足:
①l是函數(shù)y=f(x)的圖象在點(2,f(2))處的切線
②l與函數(shù)y=g(x) 的圖象相切于點P(x0,y0),x0∈[e-1,e],如果存在,求實數(shù)b的取值范圍;不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
12
m(x-1)2
-2x+3+lnx.
(Ⅰ)設(shè)m∈R,討論函數(shù)f(x)的單調(diào)性.
(Ⅱ)設(shè)m>0,曲線C:y=f(x)在點(1,1)處的切線l與C有且僅有一個公共點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案