【題目】已知數(shù)列{an}滿足a1=2,an+1=2(Sn+n+1)(nN*),令bn=an+1.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)證明:

【答案】(1)bn=3n;(2)見(jiàn)證明

【解析】

(1)運(yùn)用數(shù)列的遞推式和等比數(shù)列的通項(xiàng)公式,可得所求;

(2)由an+1=3n,可得=,再由裂項(xiàng)相消求和,結(jié)合不等式的性質(zhì)可得證明.

(1)由題意,可知a1=2,an+1=2(Sn+n+1)①

n=1時(shí),a2=2×(2+1+1)=8,

n≥2時(shí),an=2(Sn-1+n)②

①②相減整理可得an+1=3an+2,

可得an+1+1=3(an+1),n=1時(shí),上式也成立,即有bn+1=3bn,

所以數(shù)列的通項(xiàng)公式為bn=b13n-1=3n

(2)由an+1=3n,可得=

即有

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知|x|≤2,|y|≤2,點(diǎn)P的坐標(biāo)為(x,y).

(1)求當(dāng)x,yR時(shí),P滿足(x-2)2+(y-2)2≤4的概率.

(2)求當(dāng)x,yZ時(shí),P滿足(x-2)2+(y-2)2≤4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為菱形, , ,且平面平面.

(1)求證: ;

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】釣魚島及其附屬島嶼是中國(guó)固有領(lǐng)土,如圖:點(diǎn)A、BC分別表示釣魚島、南小島、黃尾嶼,點(diǎn)C在點(diǎn)A的北偏東47°方向,點(diǎn)B在點(diǎn)C的南偏西36°方向,點(diǎn)B在點(diǎn)A的南偏東79°方向,且A、B兩點(diǎn)的距離約為3海里.

1)求AC兩點(diǎn)間的距離;(精確到0.01

2)某一時(shí)刻,我國(guó)一漁船在A點(diǎn)處因故障拋錨發(fā)出求救信號(hào).一艘R國(guó)艦艇正從點(diǎn)C正東10海里的點(diǎn)P處以18海里/小時(shí)的速度接近漁船,其航線為PCA(直線行進(jìn)),而我東海某漁政船正位于點(diǎn)A南偏西60°方向20海里的點(diǎn)Q處,收到信號(hào)后趕往救助,其航線為先向正北航行8海里至點(diǎn)M處,再折向點(diǎn)A直線航行,航速為22海里/小時(shí).漁政船能否先于R國(guó)艦艇趕到進(jìn)行救助?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線Cy2=4x焦點(diǎn)為F,直線lC交于A,B兩點(diǎn).

(1)若l過(guò)F且斜率為1,求|AB|;

(2)若不過(guò)坐標(biāo)原點(diǎn)O,且OAOB,證明:直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某超市一年中各月份的收入與支出單位:萬(wàn)元情況的條形統(tǒng)計(jì)圖已知利潤(rùn)為收入與支出的差,即利潤(rùn)收入一支出,則下列說(shuō)法正確的是  

A. 利潤(rùn)最高的月份是2月份,且2月份的利潤(rùn)為40萬(wàn)元

B. 利潤(rùn)最低的月份是5月份,且5月份的利潤(rùn)為10萬(wàn)元

C. 收入最少的月份的利潤(rùn)也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓過(guò)點(diǎn)A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于B,C兩點(diǎn)(異于點(diǎn)A),線段BCy軸平分,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列的前五項(xiàng)和,且成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)若為數(shù)列的前項(xiàng)和,且存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大。

3)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案