【題目】空間四邊形ABCD中,AB=CD且異面直線AB與CD所成的角為30°,E,F(xiàn)為BC和AD的中點,則異面直線EF和AB所成的角為(
A.15°
B.30°
C.45°或75°
D.15°或75°

【答案】D
【解析】解:取AC的中點G,
連接GE與GF,則AB與CD(異面直線)所成角為30°,
∵EG∥AB,F(xiàn)G∥CD,
∴∠GEF=30°或150°,
而AB=CD,
則GE=GF,
∴∠GFE=75°或∠GFE=15°.
∴EF與AB所成的角是75°或15°.
故選D.

【考點精析】認真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當x∈[1,3]時,不等式 恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個不同的零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,橢圓C1 + =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2 =1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.

(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;

(3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,AC∥DE,AC與BD相交于H點.

(1)求證:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若不等式|2x﹣1|﹣|x+a|≥a對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點相同 ,為橢圓的左、右焦點為橢圓上任意一點,面積的最大值為1

1求橢圓的方程;

2直線交橢圓,兩點

i若直線的斜率分別為,,求證直線過定點并求出該定點的坐標;

ii若直線的斜率時直線斜率的等比中項,求△面積的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a為實數(shù),函數(shù)f(x)=2x2+(x﹣a)|x﹣a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設函數(shù)h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x+θ)+ cos(x+θ), ,且函數(shù)f(x)是偶函數(shù),則θ的值為

查看答案和解析>>

同步練習冊答案