已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標為4,.
(1)求拋物線的方程;
(2)設(shè)點是拋物線上的兩點,的角平分線與軸垂直,求的面積最大時直線的方程.
(1);(2)
解析試題分析:(1)由于點是拋物線上的一點,且其縱坐標為4,假設(shè)點,再通過,可得一個關(guān)于與的關(guān)系式,在結(jié)合拋物線方程即可求出.從而求得拋物線的方程.
(2)因為的角平分線與軸垂直,所以可知的傾斜角互補,即的斜率互為相反數(shù).所以假設(shè)直線PA,聯(lián)立拋物線方程即可得到點A的坐標,類比地求出點B的坐標.結(jié)合韋達定理,可以得到直線AB的斜率為定值-1.通過假設(shè)直線AB的方程,聯(lián)立拋物線的方程,應(yīng)用點到直線的距離,即可表示三角形的面積.再通過求最值即能到結(jié)論.
試題解析:(1)設(shè),因為,由拋物線的定義得,又,所以,
因此,解得,從而拋物線的方程為.
(2)由(1)知點的坐標為,因為的角平分線與軸垂直,所以可知的傾斜角互補,即的斜率互為相反數(shù)
設(shè)直線的斜率為,則,由題意,
把代入拋物線方程得,該方程的解為4、,
由韋達定理得,即,同理,
所以,
設(shè),把代入拋物線方程得,
由題意,且,從而
又,所以,點到的距離,
因此,設(shè),
則,
由知,所以在上為增函數(shù),因此,
即面積的最大值為.
的面積取最大值時,所以直線的方程為.
考點:1.拋物線的性質(zhì).2.函數(shù)的最值.3.等價變換.4.圓錐曲線與函數(shù)知識的交匯.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2x+k·2-x,k∈R.
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)k的值;
(2)若對任意的x∈[0,+∞)都有f(x)>2-x成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)f(x)=sin2ax-sinaxcosax(a>0)的圖象與直線y=m相切,相鄰切點之間的距離為.
(1)求m和a的值;
(2)若點A(x0,y0)是y=f(x)圖象的對稱中心,且x0∈,求點A的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號加強中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過點,邊界線滿足.
設(shè)()百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當取何值時?整個中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象分別與軸相交于兩點,且向量(分別是與軸正半軸同方向的單位向量),又函數(shù).
(1)求的值;
(2)若不等式的解集為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com