【題目】已知中.
(Ⅰ)當時,解不等式;
(Ⅱ)已知時,恒有,求實數(shù)的取值集合.
【答案】(1);(2).
【解析】分析:(1)當時,代入化簡的不等式等價于,即可求解不等式的解集;
(2)法一:由題意得,于是只能,經(jīng)驗證滿足題意,即可得到結論;
法二:當時,恒成立,即恒成立,設,,則問題轉化為時,恒成立,即當時,恒有或,利用函數(shù)的單調(diào)性及函數(shù)的圖象,即可求解.
詳解:(1)當時,不等式即為,
等價于,
由數(shù)軸標根法知不等式的解集為.
(2)法一:由題,,于是只能,
而時,,
當時,,,恒有,
故實數(shù).
法二:當時,恒成立,即恒成立,
不妨設,,則問題轉化為時,恒成立,即當時,恒有或,
不難知,在上單調(diào)遞減,在上單調(diào)遞增,
且函數(shù)與的圖象相交于點,
結合圖象可知,
當且僅當時,或恒成立,故實數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為公差不為0的等差數(shù)列,滿足a1=5,且a2 , a9 , a30成等比數(shù)列.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足 ﹣ =an(n∈N*),且b1= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=( )
A.[﹣2,4)
B.(﹣1,3]
C.[﹣2,﹣1]
D.[﹣1,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的 列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
(參考公式 ,其中 .)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“魅力紅谷灘”才藝展示評比中,參賽選手成績的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見部分如圖所示.
(1)根據(jù)圖中信息,將圖乙中的頻率分布直方圖補充完整;
(2)根據(jù)頻率分布直方圖估計選手成績的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(3)從成績在[80,100]的選手中任選2人進行PK,求至少有1 人成績在[90,100]的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點C,半徑為 ,且點P在圖中陰影部分(包括邊界)運動.若 =x +y ,其中x,y∈R,則4x﹣y的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種商品在30天內(nèi)每克的銷售價格(元)與時間的函數(shù)圖像是如圖所示的兩條線段,(不包含,兩點);該商品在 30 天內(nèi)日銷售量(克)與時間(天)之間的函數(shù)關系如下表所示.
第天 | 5 | 1 5 | 2 0 | 3 0 |
銷售量克 | 3 5 | 2 5 | 2 0 | 1 0 |
(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格(元)與時間的函數(shù)關系式;
(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量隨時間變化的函數(shù)關系式;
(3)在(2)的基礎上求該商品的日銷售金額的最大值,并求出對應的值.
(注:日銷售金額=每克的銷售價格×日銷售量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com