【題目】已知橢圓的中心為原點,離心率,其中一個焦點的坐標(biāo)為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)點在橢圓上運動時,設(shè)動點的運動軌跡為若點滿足: 其中是上的點.直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標(biāo);若不存在,說明理由.
【答案】(Ⅰ) (Ⅱ)詳見解析.
【解析】試題分析: (Ⅰ)根據(jù)離心率和焦點坐標(biāo)以及求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)由于點在曲線上運動時,動點的軌跡的方程為,通過可建立點T和點M,N坐標(biāo)之間的關(guān)系式,通過直線的斜率之積為定值,又得到另外一個關(guān)系式,且點M,N的坐標(biāo)滿足橢圓的方程,均為二次,因此給兩等式分別平方,再對應(yīng)系數(shù)比為1:2,相加即可得到關(guān)于x,y的方程,即點T的軌跡為橢圓,兩個定點為焦點.
試題解析:(Ⅰ)由題意知, 所以所以
故橢圓的方程為
(Ⅱ)設(shè)則
因為點在橢圓上運動,所以
故動點的軌跡的方程為
由得
設(shè)分別為直線的斜率,由已知條件知,所以
因為點在橢圓上,所以
故
從而知點是橢圓上的點,所以,存在兩個定點且為橢圓的兩個焦點,使得為定值.其坐標(biāo)分別為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=a,an+1=2an+ (a,λ∈R).
(1)若λ=-2,數(shù)列{an}單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若a=2,試寫出an≥2對任意的n∈N*成立的充要條件,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù),時的圖象且最高點B(-1,4),在y軸右側(cè)的曲線段是以CO為直徑的半圓弧.
(1)試確定A,和的值;
(2)現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO(單位:米),在點C與半圓弧上的一點D之間設(shè)計為直線段(造價為2萬元/米),從D到點O之間設(shè)計為沿半圓弧的弧形(造價為1萬元/米).設(shè)(弧度),試用來表示修建步行道的造價預(yù)算,并求造價預(yù)算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,∈[1,+∞).
(1)當(dāng)時,判斷函數(shù)的單調(diào)性并證明;
(2)當(dāng)時,求函數(shù)的最小值;
(3)若對任意∈[1,+∞),>0恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(1)若=6,求k的值;
(2)求四邊形AEBF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求曲線在點處的切線方程;
(2)若,求零點的個數(shù);
(3)若為整數(shù),且當(dāng)時, 恒成立,求的最大值.
(參考數(shù)據(jù), , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)從某班的一次期末考試中,隨機的抽取了七位同學(xué)的數(shù)學(xué)(滿分150分)、物理(滿分110分)成績?nèi)缦卤硭荆瑪?shù)學(xué)、物理成績分別用特征量表示,
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
t | 101 | 124 | 119 | 106 | 122 | 118 | 115 |
y | 74 | 83 | 87 | 75 | 85 | 87 | 83 |
求關(guān)于t的回歸方程;
(2)利用(1)中的回歸方程,分析數(shù)學(xué)成績的變化對物理成績的影響,并估計該班某學(xué)生數(shù)學(xué)成績130分時,他的物理成績(精確到個位).
附:回歸方程 中斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).
(I)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;
(II)設(shè)函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點,求m的值;
(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畫出下列函數(shù)的圖像,并根據(jù)圖像說出函數(shù)y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上函數(shù)y=f(x)是增函數(shù)還是減函數(shù)。
(1)y=x2-5x-6; (2)y=|4-x2|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com