【題目】如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù),時的圖象且最高點B-1,4,在y軸右側(cè)的曲線段是以CO為直徑的半圓弧

(1)試確定A,的值;

(2)現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO單位,在點C與半圓弧上的一點D之間設計為直線段造價為2萬元/米,從D到點O之間設計為沿半圓弧的弧形造價為1萬元/米弧度試用來表示修建步行道的造價預算,并求造價預算的最大值?只考慮步行道的,不考慮步行道的寬度

【答案】12造價,,時取極大值,也即造價預算最大值為萬元

【解析】

試題分析:(1五點法可求得;21求出點坐標,得半圓的半徑,用表示出弦長和弧長,由題意可得造價,下面用導數(shù)的知識求出的最大值

試題解析(1)因為最高點B-1,4,所以A=4;

,

因為

代入點B-1,4

,

;

(2)(1)可知

,得點C

取CO中點F,連結(jié)DF,因為弧CD為半圓弧,所以

,則圓弧段造價預算為萬元,

中,,則直線段CD造價預算為萬元

所以步行道造價預算,

得當時,,

時,,即上單調(diào)遞增;

時,,即上單調(diào)遞減

所以時取極大值,也即造價預算最大值為萬元……16分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了研究“教學方式”對教學質(zhì)量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.

(1)現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;

(2)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不太主動參加班級工作

合計

學習積極性高

18

7

25

學習積極性一般

6

19

25

合計

24

26

50

(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關?并說明理由.

參考公式與臨界值表:K2.

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某集團為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經(jīng)調(diào)查投入廣告費t(百萬元),可增加銷售額約為-t25t(百萬元)(0t5) (注:收益=銷售額-投放)

1)若該公司將當年的廣告費控制在3百萬元之內(nèi),則應投入多少廣告費,才能使該公司由此獲得的收益最大?

2)現(xiàn)該公司準備共投入3百萬元,分別用于廣告促銷和技術(shù)改造.經(jīng)預測,每投入技術(shù)改造費x(百萬元),可增加的銷售額約為-x3x23x(百萬元).請設計一個資金分配方案,使該公司由此獲得的收益最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

2)若函數(shù)上的最小值為3,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術(shù)節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心為原點,離心率,其中一個焦點的坐標為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)當點在橢圓上運動時,設動點的運動軌跡為若點滿足: 其中上的點.直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,BC邊上的中線AD長為3,且BD=2,sinB=

(Ⅰ)求sin∠BAD的值;

(Ⅱ)求AC的長.

查看答案和解析>>

同步練習冊答案