【題目】已知橢圓,與軸的正半軸交于點(diǎn),右焦點(diǎn), 為坐標(biāo)原點(diǎn),且.
(1)求橢圓的離心率;
(2)已知點(diǎn),過(guò)點(diǎn)任意作直線與橢圓交于兩點(diǎn),設(shè)直線的斜率,若,求橢圓的方程.
【答案】(1);(2).
【解析】試題分析:(1)tan∠PFO=可得=,c=b,a==b即可得出(2)直線斜率不為0時(shí),設(shè)出直線方程ty=x﹣1,設(shè)C(x1,y1),D(x2,y2).聯(lián)立,化為:(t2+3)y2+2ty+1﹣3b2=0,∵k1+k2=2,∴+=2,根據(jù)韋達(dá)定理代入求解即可,斜率為0 時(shí)也成立
試題解析:
(1)∵tan∠PFO=,∴=,∴c=b,a==b.
∴==.
(2)直線l的斜率不為0時(shí),設(shè)直線l的方程為:ty=x﹣1.設(shè)C(x1,y1),D(x2,y2).
聯(lián)立,化為:(t2+3)y2+2ty+1﹣3b2=0,
y1+y2=,y1y2=,
∵k1+k2=2,∴+=2,
化為:(y1﹣2)(ty2﹣2)+(y2﹣2)(ty1﹣2)=2(ty1﹣2)(ty2﹣2),
即:ty1y2=y1+y2,
∴t=,對(duì)t∈R都成立.
化為:b2=1,
直線l的斜率為0時(shí)也成立,
∴b2=1,
∴橢圓C的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)在區(qū)間上的最小值;
(Ⅱ)證明:對(duì)任意, ,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 在和處取得極值,且,曲線在處的切線與直線垂直.
(Ⅰ)求的解析式;
(Ⅱ)證明關(guān)于的方程至多只有兩個(gè)實(shí)數(shù)根(其中是的導(dǎo)函數(shù), 是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng),則稱點(diǎn)為平面上單調(diào)格點(diǎn):設(shè)
求從區(qū)域中任取一點(diǎn),而該點(diǎn)落在區(qū)域上的概率;
求從區(qū)域中的所有格點(diǎn)中任取一點(diǎn),而該點(diǎn)是區(qū)域上的格點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m個(gè)正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1 , a2 , a3 , …ak﹣1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am﹣1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak﹣1+ak=3(ak+1+ak+2+…+am﹣1+am)?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】互不相等的三個(gè)正數(shù)x1 , x2 , x3成等比數(shù)列,且點(diǎn)P1(logax1 , logby1)P2(logax2 , logby2),P3(logax3 , logby3)共線(a>0且a≠0,b>且b≠1)則y1 , y2 , y3成( )
A.等差數(shù)列,但不等比數(shù)列
B.等比數(shù)列而非等差數(shù)列
C.等比數(shù)列,也可能成等差數(shù)列
D.既不是等比數(shù)列,又不是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c. , ,且 .
(Ⅰ)求A的大小;
(Ⅱ)若a=1, .求S△ABC .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明想將短軸長(zhǎng)為2,長(zhǎng)軸長(zhǎng)為4的一個(gè)半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DE∥AB,AB為短軸,OC為長(zhǎng)半軸
(1)求梯形ABDE上底邊DE與高OH長(zhǎng)的關(guān)系式;
(2)若半橢圓上到H的距離最小的點(diǎn)恰好為C點(diǎn),求底邊DE的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)創(chuàng)“市級(jí)示范性學(xué)!钡募、乙兩所學(xué)校進(jìn)行復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿意度一項(xiàng)評(píng)價(jià)隨機(jī)訪問(wèn)了20為市民,這20位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績(jī)分成了四個(gè)等級(jí):成績(jī)?cè)趨^(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間為等.
(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù),并通過(guò)觀察莖葉圖,對(duì)兩所學(xué)校辦學(xué)的社會(huì)滿意度進(jìn)行比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求乙校得分的等級(jí)高于甲校得分的等級(jí)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com