【題目】已知袋中裝有紅球,黑球共7個,若從中任取兩個小球(每個球被取到的可能性相同),其中恰有一個紅球的概率為.

1)求袋中紅球的個數(shù);

2)若袋中紅球比黑球少,從袋中任取三個球,求三個球中恰有一個紅球的概率.

【答案】13個或4 2

【解析】

1)設(shè)袋中紅球的個數(shù)為x,黑球個數(shù)為,根據(jù)分步計數(shù)原理求出基本事件總數(shù)以及恰有一個紅球包含的基本事件數(shù),解方程即可求出答案;

2)根據(jù)計數(shù)原理求出恰有一個紅球的基本事件數(shù)與基本事件總數(shù),再根據(jù)概率計算公式求解即可.

解:(1)設(shè)袋中紅球的個數(shù)為x,黑球個數(shù)為,則:

總的基本事件個數(shù),

取出一個紅球的基本事件個數(shù)為,

,化簡得,

解得

∴袋中紅球的個數(shù)為3個或4個;

2)由(1)可知袋中有3個紅球,4個黑球,

基本事件總數(shù)為,

①第一次取紅球包含的基本事件數(shù)為:,

②第二次取紅球包含的基本事件數(shù)為:,

③第三次取紅球包含的基本事件數(shù)為:

∴所求概率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,,、分別為線段、上一點,且.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).

1)若具有性質(zhì),且, ,求;

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , 判斷是否具有性質(zhì),并說明理由;

3)設(shè)是無窮數(shù)列,已知.求證:對任意都具有性質(zhì)的充要條件為是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為正方形,,且,平面.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中有5只同型號的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設(shè)每只燈泡被取到的可能性都相同,請用“列舉法”解答下列問題:

(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;

(Ⅱ)求至少有一次取到二等品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,,,點、分別在線段、上,且,,現(xiàn)將沿折到的位置,連結(jié),,如圖2

1)證明:

2)記平面與平面的交線為.若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為,為圓上任意一點,,線段的垂直平分線交于點.

1)求點的軌跡方程;

2)記點的軌跡為曲線,點,.若點為直線上一動點,且不在軸上,直線、分別交曲線、兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自貢農(nóng)科所實地考察,研究發(fā)現(xiàn)某貧困村適合種植,兩種藥材,可以通過種植這兩種藥材脫貧.通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):藥材的畝產(chǎn)量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:

編號

1

2

3

4

5

年份

2015

2016

2017

2018

2019

單價(元/公斤)

18

20

23

25

29

藥材的收購價格始終為20/公斤,其畝產(chǎn)量的頻率分布直方圖如下:

1)若藥材的單價(單位:元/公斤)與年份編號具有線性相關(guān)關(guān)系,請求出關(guān)于的回歸直線方程,并估計2020年藥材的單價;

2)用上述頻率分布直方圖估計藥材的平均畝產(chǎn)量,若不考慮其他因素,試判斷2020年該村應(yīng)種植藥材還是藥材?并說明理由.

參考公式:,(回歸方程中)

查看答案和解析>>

同步練習冊答案