【題目】在正方體ABCD-A1B1C1D1中,點(diǎn)M、N分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】B
【解析】
由題意在四條棱A1A,B1B,C1C,D1D上分別取點(diǎn)G,F,E,H四點(diǎn),使AGA1A,BFB1B,CEC1C,DHD1D,得到平面GFEH,則點(diǎn)M,N在與平面A1B1C1D1平行的平面GFEH中.利用線面垂直的性質(zhì)判斷①正確;利用平行公理判斷②錯(cuò)誤;利用面面平行的性質(zhì)判斷③正確;利用面面平行以及線線垂直的性質(zhì)判斷④錯(cuò)誤.
在正方體ABCD﹣A1B1C1D1的四條棱A1A,B1B,C1C,D1D上分別取點(diǎn)G,F,E,H四點(diǎn),
使AGA1A,BFB1B,CEC1C,DHD1D,連接GF,FE,EH,HG,
∵點(diǎn)M、N分別在AB1、BC1上,且AMAB1,BNBC1,
∴M在線段GF上,N點(diǎn)在線段FE上.且四邊形GFEH為正方形,平面GFEH∥平面A1B1C1D1,
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,
∵MN平面GFEH,∴AA1⊥MN,故①正確;
∵A1C1∥GE,而GE與MN不平行,∴A1C1與MN不平行,故②錯(cuò)誤;
∵平面GFEH∥平面A1B1C1D1,MN平面GFEH,∴MN∥平面A1B1C1D1,故③正確;
∵B1D1∥FH,FH平面GFEH,MN平面GFEH,且MN與FH不垂直,∴B1D1與MN不垂直,故④錯(cuò)誤.
∴正確命題只有①③.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭為了解冬季用電量(度)與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某5天的用電量與當(dāng)天氣溫,并制作了對照表,經(jīng)過統(tǒng)計(jì)分析,發(fā)現(xiàn)氣溫在一定范圍內(nèi)時(shí),用電量與氣溫具有線性相關(guān)關(guān)系:
0 | 1 | 2 | 3 | 4 | |
(度) | 15 | 12 | 11 | 9 | 8 |
(1)求出用電量關(guān)于氣溫的線性回歸方程;
(2)在這5天中隨機(jī)抽取兩天,求至少有一天用電量低于10(度)的概率.
(附:回歸直線方程的斜率和截距的最小二乘法估計(jì)公式為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:(為自然對數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,已知平面,為的中點(diǎn),,過點(diǎn)作于,連接,,.
(1)求證:平面平面;
(2)若直線與平面所成角的正切值為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點(diǎn)M、N分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線與軸有兩個(gè)焦點(diǎn),且經(jīng)過點(diǎn)
(1)求的值;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求的最小值;
(3)過且斜率為的直線與“羽毛球形線”相交于點(diǎn)三點(diǎn),問是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),(),圓C的參數(shù)方程(θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游戲公司對今年新開發(fā)的一些游戲進(jìn)行評(píng)測,為了了解玩家對游戲的體驗(yàn)感,研究人員隨機(jī)調(diào)查了300名玩家,對他們的游戲體驗(yàn)感進(jìn)行測評(píng),并將所得數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中.
(1)求這300名玩家測評(píng)分?jǐn)?shù)的平均數(shù);
(2)由于該公司近年來生產(chǎn)的游戲體驗(yàn)感較差,公司計(jì)劃聘請3位游戲?qū)<覍τ螒蜻M(jìn)行初測,如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請2位專家二測,二測時(shí),2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為,且每款游戲之間改進(jìn)與否相互獨(dú)立.
(i)對該公司的任意一款游戲進(jìn)行檢測,求該款游戲需要改進(jìn)的概率;
(ii)每款游戲聘請專家測試的費(fèi)用均為300元/人,今年所有游戲的研發(fā)總費(fèi)用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進(jìn)行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費(fèi)用是否超過預(yù)算,并通過計(jì)算說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com