已知拋物線,直線兩點(diǎn),是線段的中點(diǎn),過軸的垂線交于點(diǎn).(1)證明:拋物線在點(diǎn)處的切線與平行;(2)是否存在實(shí)數(shù)使NANB,若存在,求的值;若不存在,說明理由.
(Ⅰ) 略  (Ⅱ)   
法一:(Ⅰ)如圖,設(shè),,把代入,由韋達(dá)定理得
點(diǎn)的坐標(biāo)為
設(shè)拋物線在點(diǎn)處的切線的方程為,
代入上式得,直線與拋物線相切,
.即
(Ⅱ)假設(shè)存在實(shí)數(shù),使,則,又的中點(diǎn),
.由(Ⅰ)知
軸,

,解得.即存在,使
解法二:(Ⅰ)如圖,設(shè),把代入
.由韋達(dá)定理得
,點(diǎn)的坐標(biāo)為,,
拋物線在點(diǎn)處的切線的斜率為,
(Ⅱ)假設(shè)存在實(shí)數(shù),使
由(Ⅰ)知,則





,,解得.即存在,使
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,與圓x2+y2=17交于A(4,-1).若圓在點(diǎn)A的切線與雙曲線的一條漸近線平行,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)離心率為的橢圓上有一點(diǎn)到橢圓兩焦點(diǎn)的距離和為.以橢圓的右焦點(diǎn)為圓心,短軸長(zhǎng)為直徑的圓有切線為切點(diǎn)),且點(diǎn)滿足為橢圓的上頂點(diǎn))。(I)求橢圓的方程;(II)求點(diǎn)所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與雙曲線的左支交于兩點(diǎn),另一直線過點(diǎn)的中點(diǎn),求直線軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)向量為直角坐標(biāo)平面內(nèi)x軸,y軸正方向上的單位向量.若向量,,且.(1)求滿足上述條件的點(diǎn)的軌跡方程;(2)設(shè),問是否存在常數(shù),使得恒成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),給定兩點(diǎn),點(diǎn)滿足   ,其中,且.  (1)求點(diǎn)的軌跡方程;(2)設(shè)點(diǎn)的軌跡與雙曲線交于兩點(diǎn),且以為直徑的圓過原點(diǎn),求證:為定值;(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實(shí)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
已知曲線C上的動(dòng)點(diǎn)滿足到點(diǎn)的距離比到直線的距離小1.
求曲線C的方程;過點(diǎn)F的直線l與曲線C交于A、B兩點(diǎn).(。┻^A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M,證明;(ⅱ)是否在y軸上存在定點(diǎn)Q,使得無論AB怎樣運(yùn)動(dòng),都有?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)M到直線x=-1的距離等于它到圓F:(x-2)2+y2=1的點(diǎn)的最小距離.
(1)求點(diǎn)M的軌跡方程;
(2)已知過點(diǎn)F的直線與點(diǎn)M的軌跡交于A,B兩點(diǎn),且|AF|=8,求|BF|的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案