(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分6分.
已知橢圓
過點
,兩焦點為
、
,
是坐標原點,不經(jīng)過原點的直線
與橢圓交于兩不同點
、
.
(1)求橢圓C的方程;
(2) 當
時,求
面積的最大值;
(3) 若直線
、
、
的斜率依次成等比數(shù)列,求直線
的斜率
.
(1)
,(2)1,(3)
.
試題分析:(1)求橢圓標準方程,通常利用待定系數(shù)法求解,即只需兩個獨立條件解出a,b即可. 由
及
,解得
所以橢圓
的方程為
.(2)解幾中面積問題,通常轉化為點到直線距離.
當且僅當
時,等號成立 所以
面積的最大值為
.(3)涉及斜率問題,通常轉化為對應坐標的運算. 由
消去
得:
,
,
,因為直線
的斜率依次成等比數(shù)列,所以
,故
試題解析:[解] (1)由題意得
,可設橢圓方程為
2分
則
,解得
所以橢圓
的方程為
. 4分
(2)
消去
得:
則
6分
設
為點
到直線
的距離,則
8分
當且僅當
時,等號成立 所以
面積的最大值為
. 10分
(2)
消去
得:
12分
則
故
14分
因為直線
的斜率依次成等比數(shù)列
所以
,由于
故
16分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左右焦點分別為
,點
為短軸的一個端點,
.
(1)求橢圓
的方程;
(2)如圖,過右焦點
,且斜率為
的直線
與橢圓
相交于
兩點,
為橢圓的右頂點,直線
分別交直線
于點
,線段
的中點為
,記直線
的斜率為
.
求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知焦點在
軸上的橢圓
過點
,且離心率為
,
為橢圓
的左頂點.
(1)求橢圓
的標準方程;
(2)已知過點
的直線
與橢圓
交于
,
兩點.
(。┤糁本
垂直于
軸,求
的大小;
(ⅱ)若直線
與
軸不垂直,是否存在直線
使得
為等腰三角形?如果存在,求出直線
的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是直線
被橢圓
所截得的線段的中點,則直線
的方程是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
[2013·浙江高考]如圖,F(xiàn)
1,F(xiàn)
2是橢圓C
1:
+y
2=1與雙曲線C
2的公共焦點,A,B分別是C
1,C
2在第二、四象限的公共點.若四邊形AF
1BF
2為矩形,則C
2的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)(2011•陜西)設橢圓C:
過點(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(3,0)且斜率為
的直線被C所截線段的中點坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
(2011•浙江)設F
1,F(xiàn)
2分別為橢圓
+y
2=1的焦點,點A,B在橢圓上,若
=5
;則點A的坐標是
_________ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的左、右焦點為
,過
作直線
交C于A,B兩點,若
是等腰直角三角形,且
,則橢圓C的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線
與橢圓
相交于
、
兩點,若橢圓的離心率為
,焦距為2,則線段
的長是( )
查看答案和解析>>