【題目】如圖1,平行四邊形,直平分,,現(xiàn)將沿如圖2,使

求證:直線;

平面平面成的角銳角的余弦值.

【答案】證明見解析;.

【解析】

試題分析:起成圖后,,,又,所以;分別為,建立空間直角坐標(biāo),求平一個(gè)法向量為,平面一個(gè)法向量為,可得平面平面成的角銳角的余弦值為.

試題解析:由題設(shè):,,,

1折起成圖2后,

,,

,,

,

①②③得,直線

坐標(biāo)原點(diǎn),分別為,建立空間直角坐標(biāo)

,,,

設(shè)平一個(gè)法向量為,

,,

,

所以,平面一個(gè)法向量為,

設(shè)平面平面成的角

,

以,平面平面成的角銳角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016 年1 月1 日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策.為了解適齡民眾對(duì)放開生育二胎政策的態(tài)度,某市選取后和后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了位,得到數(shù)據(jù)如下表:

)以這個(gè)人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若從該市后公民中隨機(jī)抽取位,記其中生二胎的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

)根據(jù)調(diào)查數(shù)據(jù),是否有 以上的把握認(rèn)為“生二胎與年齡有關(guān)”,并說明理由:

參考數(shù)據(jù):

參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l、m 、n 與平面α、β給出下列四個(gè)命題:

m∥l,n∥l,則m∥n; m⊥α,m∥β,則α⊥β;

m∥αn∥α,則m∥n;m⊥βα⊥β,則m∥α

其中,假命題的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是不同的直線, 是不同的平面,已知,下列說法正確的是 ( )

A. ,則 B. ,則

C. ,則 D. ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)軸的非負(fù)半軸為極軸建立極坐標(biāo),且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知點(diǎn)的極坐標(biāo)為,的極坐標(biāo)方程為為曲線上的動(dòng)點(diǎn)到定點(diǎn)的距離等于圓的半徑

(1)求曲線的直角坐標(biāo)方程;

(2)若過點(diǎn)的直線的參數(shù)方程為為參數(shù)),且直線與曲線交于、兩點(diǎn)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的焦距2,離心率為上一點(diǎn)坐標(biāo)為

求該橢圓方程;

對(duì)于直線,橢圓總存在不同的兩點(diǎn)關(guān)于直線對(duì)稱,且,

實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,延長(zhǎng)CD至E,使得DE=CD.若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿正方形的邊按逆時(shí)針方向運(yùn)動(dòng)一周回到A點(diǎn),其下列敘述正確的是( )

A. 滿足λ+μ=2的點(diǎn)P必為BC的中點(diǎn)

B. 滿足λ+μ=1的點(diǎn)P有且只有一個(gè)

C. λ+μ的最大值為3

D. λ+μ的最小值不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線l1axby+4=0,l2:(a1x+y+b=0,分別求滿足下列條件的ab

1l1l2,且直線l1過點(diǎn)(31);

2l1l2,且直線l1在兩坐標(biāo)軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

1求曲線的直角坐標(biāo)方程并指出其形狀;

2設(shè)是曲線上的動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案