【題目】隨機調(diào)查名性別不同的大學生是否喜歡打羽毛球,得到如下列聯(lián)表:

總計

喜歡打羽毛球

不喜歡打羽毛球

總計

臨界值表:

參考公式:(其中

參照臨界值表,下列結(jié)論正確的是(

A. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別有關(guān)”

B. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別無關(guān)”

C. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別有關(guān)”

D. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別無關(guān)”

【答案】C

【解析】分析:根據(jù)獨立性檢驗的計算公式,可求得,由臨界值表即可判斷。

詳解:根據(jù)公式,可求得

由臨界值表,可知在 ,所以在犯錯誤的概率不超過的前提下,認為喜歡打羽毛球與性別有關(guān)

所以選C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 所在平面互相垂直,且 分別為AC、DC、AD的中點

1)求證: 平面BCG;

2)求三棱錐D-BCG的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校隨機抽取部分新生調(diào)查其上學所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學所需時間的范圍是,樣本數(shù)據(jù)分組為,,

(1)求直方圖中x的值;

(2)如果上學所需時間不少于1小時的學生可申請在學校住宿,若該學校有600名新生,請估計新生中有多少名學生可以申請住宿;

(3)由頻率分布直方圖估計該校新生上學所需時間的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是兩個不共線的非零向量.

1)設(shè),,,那么當實數(shù)t為何值時,A,B,C三點共線;

2)若,的夾角為60°,那么實數(shù)x為何值時的值最?最小值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程;

(Ⅰ)求曲線的普通方程和曲線的直角坐標方程;

(Ⅱ)設(shè)為曲線上的動點,求點到曲線上的距離的最小值的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量=4cos2-),cosx+sinx),=sinx,cosx-sinx),設(shè)fx=-1

1)求滿足|fx|≤1的實數(shù)x的集合;

2)若函數(shù)φx=[f2x+tfx-tf-x]-1+)在[-]上的最大值為2,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形和矩形所在的平面互相垂直,,是線段的中點.

(1)求證:平面;

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱柱中, 為正方形,是菱形,平面平面

(1)求證:平面;

(2)求證: ;

(3)設(shè)點E,F,H,G分別是的中點,試判斷四點是否共面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

(1)證明是等比數(shù)列,并求的通項公式;

(2)求;

(3)設(shè),若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案