在△ABC中,,記,△ABC的面積為,且滿足.
(1)求的取值范圍;
(2)求函數(shù)的最大值和最小值.

(1)(2),

解析試題分析:(1)由,得。
,∴。
的取值范圍為。              6分
(2)注意到=
=                  8分
,∴
故當(dāng),即時(shí),;            10分
故當(dāng),即時(shí),。              12分
考點(diǎn):解三角形與三角函數(shù)化簡(jiǎn)求值
點(diǎn)評(píng):本題主要涉及到向量的數(shù)量積三角形面積的計(jì)算及三角函數(shù)性質(zhì),求最值時(shí)要注意自變量角的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直角坐標(biāo)平面中,為坐標(biāo)原點(diǎn),
(1)求的大。ńY(jié)果用反三角函數(shù)值表示);
(2)設(shè)點(diǎn)軸上一點(diǎn),求的最大值及取得最大值時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)兩個(gè)非零向量、不共線
(1)若,求證:A、B、D三點(diǎn)共線;
(2)試確定實(shí)數(shù)k的值,使共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,直線,為平面上的動(dòng)點(diǎn),過點(diǎn)的垂線,垂足為點(diǎn),且
(Ⅰ)求動(dòng)點(diǎn)的軌跡曲線的方程;
(Ⅱ)設(shè)動(dòng)直線與曲線相切于點(diǎn),且與直線相交于點(diǎn),試問:在軸上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在復(fù)平面上,設(shè)點(diǎn)A、B、C ,對(duì)應(yīng)的復(fù)數(shù)分別為。過A、B、C 做平行四邊形ABCD。
求點(diǎn)D的坐標(biāo)及此平行四邊形的對(duì)角線BD的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量為非零向量,且
(1)求證:
(2) 若,求的夾角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)是直線上一點(diǎn),求的最小值及取得最小值時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,且
(1)將表示為的函數(shù),并求的單調(diào)增區(qū)間;
(2)已知分別為的三個(gè)內(nèi)角對(duì)應(yīng)的邊長(zhǎng),若,且,,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)設(shè)向量滿足
(1)求夾角的大;   (2)求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案