【題目】已知的三個(gè)頂點(diǎn)落在半徑為的球的表面上,三角形有一個(gè)角為且其對(duì)邊長(zhǎng)為3,球心到所在的平面的距離恰好等于半徑的一半,點(diǎn)為球面上任意一點(diǎn),則三棱錐的體積的最大值為( )
A. B. C. D.
【答案】C
【解析】
設(shè)外接圓的圓心為,則平面,所以,設(shè)外接圓的半徑為,,利用正弦定理即可求得:,再利用截面圓的性質(zhì)可列方程:,即可求得,即可求得點(diǎn)到平面的距離的最大值為,利用余弦定理及基本不等式即可求得:,再利用錐體體積公式計(jì)算即可得解。
設(shè)外接圓的圓心為,則平面,所以
設(shè)外接圓的半徑為,,
由正弦定理可得:,解得:
由球的截面圓性質(zhì)可得:,解得:
所以點(diǎn)到平面的距離的最大值為:.
在中,由余弦定理可得:
當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以.
所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.
當(dāng)三棱錐的底面面積最大,高最大時(shí),其體積最大.
所以三棱錐的體積的最大值為
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月,“一帶一路”沿線的20國(guó)青年評(píng)選出了中國(guó)“新四大發(fā)明”:高鐵、支付寶、共享單車(chē)和網(wǎng)購(gòu).2017年末,“支付寶大行動(dòng)”用發(fā)紅包的方法刺激支付寶的使用.某商家統(tǒng)計(jì)前5名顧客掃描紅包所得金額分別為5.5元,2.1元,3.3元,5.9元,4.7元,商家從這5名顧客中隨機(jī)抽取3人贈(zèng)送臺(tái)歷.
(1)求獲得臺(tái)歷的三人中至少有一人的紅包超過(guò)5元的概率;
(2)統(tǒng)計(jì)一周內(nèi)每天使用支付寶付款的人數(shù)與商家每天的凈利潤(rùn)元,得到7組數(shù)據(jù),如表所示,并作出了散點(diǎn)圖.
(i)直接根據(jù)散點(diǎn)圖判斷,與 哪一個(gè)適合作為每天的凈利潤(rùn)的回歸方程類(lèi)型.(的值取整數(shù))
(ii)根據(jù)(i)的判斷,建立關(guān)于的回歸方程,并估計(jì)使用支付寶付款的人數(shù)增加到35時(shí),商家當(dāng)天的凈利潤(rùn).
參考數(shù)據(jù):
22.86 | 194.29 | 268.86 | 3484.29 |
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;
(Ⅲ)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn),在軸上,且在拋物線的準(zhǔn)線上,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值為.
(1)求橢圓的方程;
(2)過(guò)焦點(diǎn),作兩條平行直線分別交橢圓于,,,四個(gè)點(diǎn).求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)為拋物線外一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,,切點(diǎn)分別為,.
(Ⅰ)若點(diǎn)為,求直線的方程;
(Ⅱ)若點(diǎn)為圓上的點(diǎn),記兩切線,的斜率分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三個(gè)頂點(diǎn)落在半徑為的球的表面上,三角形有一個(gè)角為且其對(duì)邊長(zhǎng)為3,球心到所在的平面的距離恰好等于半徑的一半,點(diǎn)為球面上任意一點(diǎn),則三棱錐的體積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),下列四個(gè)命題中真命題的序號(hào)是( )
(1)是偶函數(shù);(2)當(dāng)且僅當(dāng)時(shí),有最小值;
(3)在上是增函數(shù);(4)方程有無(wú)數(shù)個(gè)實(shí)根.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù),在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com